• Title/Summary/Keyword: 4 Wheel Steering

Search Result 125, Processing Time 0.031 seconds

Three-Dimensional Dynamic Model of Full Vehicle (전차량의 3차원 동역학 모델)

  • Min, Kyung-Deuk;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.162-172
    • /
    • 2014
  • A three-dimensional dynamic model for simulating various motions of full vehicle is presented. The model has 16 independent degrees of freedom (DOF) consisting of three kinds of components; a vehicle body of 6 DOF, 4 independent suspensions equipped at every corner of the body, and 4 tire models linked with each suspension. The dynamic equations are represented in six coordinate frames such as world fixed coordinate, vehicle fixed coordinate, and four wheel fixed coordinate frames. Then these lead to the approximated prediction model of vehicle posture. Both lateral and longitudinal dynamics can be computed simultaneously under the conditions of which various inputs including steering command, driving torque, gravity, rolling resistance of tire, aerodynamic resistance, etc. are considered. It is shown through simulations that the proposed 3D model can be useful for precise design and performance analysis of any full vehicle control systems.

A Study on Improving Driving Stability System in Slalom and Emergency Case (급선회반복 및 위급상황에서의 주행안정성 시스템에 관한 연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1716-1721
    • /
    • 2005
  • Conventionally, 2WS is used for vehicle sleeting, which can only steering front wheel. In case of trying to high speed slalom or emergency through this kind of vehicle equipped 2WS, it may occur much of side slip angle. On the other hand, 4WS makes decreasing of side slip angle, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible control the longitudinal movement of braking equipment and drive which can only availab to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improed braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

Detection and Identification of CMG Faults based on the Gyro Sensor Data (자이로 센서 정보 기반 CMG 고장 진단 및 식별)

  • Lee, Jung-Hyung;Lee, Hun-Jo;Lee, Jun-Yong;Oh, Hwa-Suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2019
  • Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

Design of an Omni-directional mobile Robot with 3 Caster Wheels

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju;Yang, Sung-Il;You, Bum-Jae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.210-216
    • /
    • 2001
  • In this paper, design of a 3-degree-of-freedom mobile robot with three caster wheels is performed. Initially, kinematic modeling and singularity analysis of the mobile robot is performed. It is found that the singularity can be avoided when the robot has more than two wheels on which two active joints are located. Optimal kinematic parameters of mobile robots with three active joint variables and with four active joint variables are obtained and compared with respect to kinematic isotropic index of the Jacobian matrix of the mobile robot which is functions of the wheel radius and the length of steering link.

  • PDF

Development of the Semi-Active Controlled Variable Damper System for Passenger Vehicles (승용차용 반능동형 가변댐퍼 시스템의 개발)

  • 허승진;심정수;황성호
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.683-689
    • /
    • 1998
  • A control algorithm for multi-stage dampers is developed based on the mode skyhook control concept, and implemented on the full vehicle system environment. The test vehicle system is equipped with the real time controller, four-stage variable dampers and sensors. The real time controller is developed using a digital signal processor(DSP), digital I/O, A/D and D/A converters. The dampers are driven by the electromagnetic actuators of less than 20 msec response time. The sensors include accelerometers, relative displacement transducers, and steering wheel rate sensors, etc. Through a series of tests in laboratory and proving ground, the performance of the semi-active suspension system is evaluated and it is shown that the vehicle dynamic characteristics is improved with the developed damping system. Futhermore, the parameter tuning methods to enhance vehicle dynamic performance are propsoed.

  • PDF

ENHANCEMENT OF VEHICLE STABILITY BY ACTIVE GEOMETRY CONTROL SUSPENSION SYSTEM

  • Lee, S.H.;Sung, H.;Kim, J.W.;Lee, U.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.303-307
    • /
    • 2006
  • This paper presents the enhancement of vehicle stability by active geometry control suspension(AGCS) system as the world-first, unique and patented chassis technology, which has more advantages than the conventional active chassis control systems in terms of the basic concept. The control approach of the conventional systems such as active suspensions(slow active, full active) and four wheel steering(4WS) system is directly to control the same direction with acting load to stabilize vehicle behavior resulting from external inputs, but AGCS controls the cause of vehicle behaviors occurring from vehicle and thus makes the system stable because it works as mechanical system after control action. The effect of AGCS is the remarkable enhancement of avoidance performance in abrupt lane change driving by controlling the rear bump toe geometry.

Analysis characteristics of officers' watch-keeping for efficient navigation bridge layout of a fisheries training vessel (효율적인 어업실습선의 선교 layout을 위한 당직항해사의 업무특성 분석)

  • KIM, Min-Son;HWANG, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.1
    • /
    • pp.56-64
    • /
    • 2016
  • This study analyzed characteristics of officers' watch-keeping during fishing operation at the fisheries training ship KAYA (GT: 1,737 tons, Pukyong National University). It observed fishing works of three officers in wheel house of KAYA. The observations were carried out at the fishing ground 45 miles away from east of Jeju from 7 to 8 January 2010. The works and movements of the officers were recorded with three common video cameras and a 4-channel MPEG-4 Triplex DVR. Recorded data of the working circulation was analyzed by using the post-processing method. As a result of the traffic lines, the average (${\pm}S.D$) of working hour (min) and moving frequency (times), distance (m) and speed (m/min) during setting the net was 11.8 (0.9), 43.7 (8.1), 133.9 (35.8) and 10.5 (0.6), respectively. During trawling the net, it was 100, 241 (39.8), 615.7 (194.6) and 5.2 (1.6), respectively. During hauling the net, it was 17.6 (1.4), 41.0 (7.2), 196.9 (37.6) and 10.7 (0.8), respectively. In addition, it has a different tendency of the instrument usage frequency by the fishing works. During setting, the usage priority was CCTV, ECDIS, RPM and pitch controller, net monitor, GPS plotter, chart room, X-band radar, fish finder and public addressor. During trawling, it was CCTV, ECDIS, fish finder, X-band radar, net monitor, chart room, GPS plotter, RPM and pitch controller, auto pilot and steering, interphone, wind speed and direction indicator, No.1. VHF, navigation light control panel and public addressor. During hauling, it was CCTV, RPM and pitch controller, GPS plotter, public addressor, chart room, net monitor, X-band radar, auto pilot and steering and fish finder.

Mechanism of Omni-directional Personal Mobility Vehicle with Diagonal Driving (대각선 주행이 가능한 전방향 개인용 이동수단용 메커니즘)

  • Park, Su-san;Im, Dea-Yeong;Cha, Hyun-Rok;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.153-159
    • /
    • 2016
  • In this paper, a mechanism of an omni-directional personal mobility which can drive diagonally is proposed. Mobility is a prerequisite involved in basic human life and activities. Personal mobility vehicle is a new mobility method which overcome the limits of automobiles. However, personal mobilities with four wheeled structure still have limitations. The proposed personal mobility vehicle can overcome the limitations of mobility because its rear wheels can be steered omni-directionally. In addition, the handicapped can drive it through a narrow road such as an alleyway or corridor and avoid obstacles on the traveling route. The proposed mechanism of personal mobility and the steering performance are tested by experiments, and the feasibility of diagonal driving is verified.

Development of the Semi-Crawler Type Mini-Forwarder - Design and Manufacture - (반궤도식 산림작업차 개발(I) - 설계 및 제작 -)

  • Kim, Jae-Hwan;Park, Sang-Jun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.154-164
    • /
    • 2011
  • This study was conducted to develop the semi-crawler type mini-forwarder that can be operated comfortable small-scale logging operation in the steep terrain and also used at a variety of operations such as the civil work in erosion control and forest-road. Considering the minimum turning radius and the width of forest operation road, the total length, width and loading capacity of the semi-crawler type mini-forwarder is 5,750 mm, 1,900 mm and $2.5m^{3}$, respectively. The maximum engine power is 96ps at 3600 rpm. Selected hydraulic pumps are consists of two main pumps and two sub-main pumps. Main hydraulic pumps are utilized to running motor of the front wheel and rear crawler. Sub-main pumps are utilized to the actuation parts such as steering, crane, out-rigger and dump cylinder. The transmission was adapted as the HST (Hydro-Static Transmission) system. The driving parts are designed and manufactured as the front wheel type and the rear crawler type. The steering type was manufactured as the ackerman type. Driving control parts type was designed and manufactured as driver's seat type of normal cars. It is also attached on auxiliary equipments such as winch, log grapple and out-rigger. The traveling speed of the semi-crawler type mini-forwarder in forest road was 5.3 km/hr to 7.7 km/hr.

Development of Path Tracking Algorithm and Variable Look Ahead Distance Algorithm to Improve the Path-Following Performance of Autonomous Tracked Platform for Agriculture (농업용 무한궤도형 자율주행 플랫폼의 경로 추종 및 추종 성능 향상을 위한 가변형 전방 주시거리 알고리즘 개발)

  • Lee, Kyuho;Kim, Bongsang;Choi, Hyohyuk;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.142-151
    • /
    • 2022
  • With the advent of the 4th industrial revolution, autonomous driving technology is being commercialized in various industries. However, research on autonomous driving so far has focused on platforms with wheel-type platform. Research on a tracked platform is at a relatively inadequate step. Since the tracked platform has a different driving and steering method from the wheel-type platform, the existing research cannot be applied as it is. Therefore, a path-tracking algorithm suitable for a tracked platform is required. In this paper, we studied a path-tracking algorithm for a tracked platform based on a GPS sensor. The existing Pure Pursuit algorithm was applied in consideration of the characteristics of the tracked platform. And to compensate for "Cutting Corner", which is a disadvantage of the existing Pure Pursuit algorithm, an algorithm that changes the LAD according to the curvature of the path was developed. In the existing pure pursuit algorithm that used a tracked platform to drive a path including a right-angle turn, the RMS path error in the straight section was 0.1034 m and the RMS error in the turning section was measured to be 0.2787 m. On the other hand, in the variable LAD algorithm, the RMS path error in the straight section was 0.0987 m, and the RMS path error in the turning section was measured to be 0.1396 m. In the turning section, the RMS path error was reduced by 48.8971%. The validity of the algorithm was verified by measuring the path error by tracking the path using a tracked robot platform.