• Title/Summary/Keyword: 4차 암모늄 그룹

Search Result 3, Processing Time 0.017 seconds

Membrane Containing Biocidal Material for Reduced Biofilm Formation: A Review (미생물막 형성을 막기 위한 살균 물질 함유 막: 총설)

  • Son, Soohyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Bacteria grow biofilm on various surface such as separation membrane, food packaging film and biomedical device. Growth of biofilm is associated with the formation of a complex structure of exopolysaccharides. Effect of antibacterial effect reduce drastically once the biofilm developed due to the difficulties in mass transport of antimicrobial agent. In order to enhance the antibacterial activity, surface of the membrane is modified, coated or immobilized with functional materials with biocidal properties. One of the idea is to introduce positive charge on the membrane surface by the presence of quaternary ammonium group which might displace divalent metal ion such as magnesium or calcium present in the bacteria cell wall. Efficacy of cell membrane disruption depends on the mobility of the agents available directly on the surface environment. In this review, various biocidal agents like quaternary ammonium group, helamine or zwitter ion containing membrane are discussed.

Preparation and Characterization of Poly(Arylene Ether) Having Heterocyclic Quaternary Ammonium Functional Groups for Anion Exchange Membranes (음이온교환막용 헤테로고리형 4차 암모늄 작용기를 갖는 폴리(아릴렌 이써)의 제조 및 특성 분석)

  • LEE, SANG HYEOK;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.372-382
    • /
    • 2022
  • In this study, anion exchange membranes were prepared by synthesizing the main chain into a poly(arylene ether) (PAE) structure, and the structures capable of improving the physical and chemical stability of the membrane by introducing a heterocyclic quaternary ammonium functional groups were studied. The chemical structure and thermal properties of the prepared polymer were confirmed by 1H-NMR, FT-IR, TGA, and DSC, and surface analysis was performed through AFM measurement. Additionally, dimensional stability and chemical properties was studied by measuring water uptake and swelling ratio, IEC and ionic conductivity. At 90℃, the quaternized poly(arylene ether) (QPAE)/1-methylpiperidine (MP) membrane exhibited the highest ionic conductivity of 27.2 mS cm-1, while the QPAE/1-methylimidazole (MI) membrane and QPAE/1-methylmorpholine (MM) membrane exhibited values of 14.5 mS cm-1 and 11.5 mS cm-1, respectively. In addition, the prepared anion exchange membrane exhibited high chemical stability in alkaline solution.

The Effect of Drug Release from Osmotic Pellet Related to the Various Ratio of $Eudragit^{(R)}$ RL and RS ($Eudragit^{(R)}$ RL과 RS의 비에 따른 삼투정 펠렛의 약물방출에 미치는 영향)

  • Youn, Ju-Yong;Ku, Jeong;Lee, Soo-Young;Kim, Byung-Soo;Kim, Moon-Suk;Lee, Bong;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.329-334
    • /
    • 2007
  • Osmotic pellet system, which is one of the oral drug delivery systems, has been developed to improve manufacturing process, reduce product cost and other problems of osmotic tablet systems. Osmotic pellet is consisted of water swellable seed layer, drug layer, and membrane layer. Among them, the membrane layer plays an important role in a control of the drug release. In this work, we examined the effect of ratio for Eudragit RL and RS on the drug release behavior. Osmotic pellet with nifedipine as a model drug was easily obtained in a good yield by fluidized bed coater. Osmotic pellet showed round morphology with a range of size $1300{\sim}1500\;{\mu}m$. In the experiment of nifedipine release, the release amount increased with the increase of the ratio of Eudragit. This is due to the fact that Eudragit RL contains more hydrophilic quaternary ammonium group than Eudragit RS. Additionally, the release amount was retarded with increasing the membrane thickness. There are no differences in the release amount measured at the different pH 1.2, 6.5, 6.8, and 7.2. In conclusion, it was found that the drug release from osmotic pellets depended on the composition ratio and coating thickness of membrane layer.