Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.4.372

Preparation and Characterization of Poly(Arylene Ether) Having Heterocyclic Quaternary Ammonium Functional Groups for Anion Exchange Membranes  

LEE, SANG HYEOK (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
YOO, DONG JIN (Department of Energy Storage Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.4, 2022 , pp. 372-382 More about this Journal
Abstract
In this study, anion exchange membranes were prepared by synthesizing the main chain into a poly(arylene ether) (PAE) structure, and the structures capable of improving the physical and chemical stability of the membrane by introducing a heterocyclic quaternary ammonium functional groups were studied. The chemical structure and thermal properties of the prepared polymer were confirmed by 1H-NMR, FT-IR, TGA, and DSC, and surface analysis was performed through AFM measurement. Additionally, dimensional stability and chemical properties was studied by measuring water uptake and swelling ratio, IEC and ionic conductivity. At 90℃, the quaternized poly(arylene ether) (QPAE)/1-methylpiperidine (MP) membrane exhibited the highest ionic conductivity of 27.2 mS cm-1, while the QPAE/1-methylimidazole (MI) membrane and QPAE/1-methylmorpholine (MM) membrane exhibited values of 14.5 mS cm-1 and 11.5 mS cm-1, respectively. In addition, the prepared anion exchange membrane exhibited high chemical stability in alkaline solution.
Keywords
Anion exchange membrane; Alkaline fuel cell; Chemical stability; Quaternary ammonium group;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. Miyake, K. Fukasawa, M. Watanabe, and K. Miyatake, "Effect of ammonium groups on the properties and alkaline stability of poly(arylene ether)-based anion exchange membranes", J. Polym. Sci. A. Polym. Chem., Vol. 52, No. 3, 2014, pp. 383-389, doi: https://doi.org/10.1002/pola.27011.   DOI
2 Q. Wang, L. Huang, J. Zheng, Q. Zhang, G. Qin, S. Li, and S. Zhang, "Design, synthesis and characterization of anion exchange membranes containing guanidinium salts with ultrahigh dimensional stability", J. Membr. Sci., Vol. 643, 2022, pp. 120008, doi: https://doi.org/10.1016/j.memsci.2021.120008.   DOI
3 M. Pan, C. Pan, C. Li, and J. Zhao, "A review of membranes in proton exchange membrane fuel cells: transport phenomena, performance and durability", Renew. Sust. Energ. Rev., Vol. 141, 2021, pp. 110771, doi: https://doi.org/10.1016/j.rser.2021.110771.   DOI
4 Z. Wang, S. F. Zhou, Y. Z. Zhuo, A. N. Lai, Y. Z. Lu, and X. B. Wu, "Adamantane-based block poly(arylene ether sulfone)s as anion exchange membranes", Polymer, Vol. 255, 2022, pp. 125155, doi: https://doi.org/10.1016/j.polymer.2022.125155.   DOI
5 H. M. Kim, C. Hu, H. H. Wang, J. H. Park, N. Chen, and Y. M. Lee, "Impact of side-chains in poly(dibenzyl-co-terphenyl piperidinium) copolymers for anion exchange membrane fuel cells", J. Membr. Sci., Vol. 644, 2022, pp. 120109, doi: https://doi.org/10.1016/j.memsci.2021.120109.   DOI
6 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Simultaneous improvement of anion conductivity and cell durability through the formation of dense ion clusters of F-doped graphitic carbon nitride/quaternized poly(phenylene oxide) composite membrane", J. Membr. Sci., Vol. 650, 2022, pp. 120384, doi: https://doi.org/10.1016/j.memsci.2022.120384.   DOI
7 L. Fan, Z. Tu, and S. H. Chan, "Recent development of hydrogen and fuel cell technologies: a review", Energy Rep., Vol. 7, 2021, pp. 8421-8446, doi: https://doi.org/10.1016/j.egyr.2021.08.003.   DOI
8 E. Gulzow, "Alkaline fuel cells: a critical view", J. Power Sources, Vol. 61, No. 1-2, 1996, pp. 99-104, doi: https://doi.org/10.1016/S0378-7753(96)02344-0.   DOI
9 Z. Luo, Y. Gong, X. Liao, Y. Pan, and H. Zhang, "Nanocomposite membranes modified by graphene-based materials for anion exchange membrane fuel cells", RSC Adv., Vol. 6, No. 17, 2016, pp. 13618-13625, doi: https://doi.org/10.1039/C5RA21104B.   DOI
10 L. Li, J. Wang, M. Hussain, L. Ma, N. A. Qaisrani, S. Ma, L. Bai, X. Yan, X. Deng, G. He, and F. Zhang, "Side-chain manipulation of poly (phenylene oxide) based anion exchange membrane: alkoxyl extender integrated with flexible spacer", J. Membr. Sci., Vol. 624, 2021, pp. 119088, doi: https://doi.org/10.1016/j.memsci.2021.119088.   DOI
11 Z. Xue, Y. Tang, X. Duan, Y. Ye, X. Xie, and X. Zhou, "Ionic polymer-metal composite actuators obtained from sulfonated poly(ether ether sulfone) ion-exchange membranes", Compos. Part A Appl. Sci. Manuf., Vol. 81, 2016, pp. 13-21, doi: https://doi.org/10.1016/j.compositesa.2015.11.007.   DOI
12 S. H. Kim and D. J. Yoo, "Simultaneous improvement of dimensional stability and ionic conductivity of QPAE/TiO2-x composite membranes according to TiO2 content control for anion exchange membrane fuel cells", Trans Korean Hydrogen New Energy Soc, Vol. 33, No. 1, 2022, pp. 19-27, doi: https://doi.org/10.7316/KHNES.2022.33.1.19.   DOI
13 D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polym. Int., Vol. 60, No. 1, 2011, pp. 85-92, doi: https://doi.org/10.1002/pi.2914.   DOI
14 F. Xu, Y. Su, and B. Lin, "Progress of alkaline anion exchange membranes for fuel cells: the effects of micro-phase separation", Front. Mater., Vol. 7, 2020, pp. 4, doi: https://doi.org/10.3389/fmats.2020.00004.   DOI
15 J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Study on the chemical stabilities of poly(arylene ether) random copolymers for alkaline fuel cells: effect of main chain structures with different monomer units", ACS Sustain. Chem. Eng., Vol. 7, No. 24, 2019, pp. 20077-20087, doi: https://doi.org/10.1021/acssuschemeng.9b05934.   DOI
16 N. Chen and Y. M. Lee, "Anion exchange polyelectrolytes for membranes and ionomers", Prog. Polym. Sci., Vol. 113, 2021, pp. 101345, doi: https://doi.org/10.1016/j.progpolymsci.2020.101345.   DOI
17 M. Vinothkannan, A. R. Kim, S. Ramakrishnan, Y. T. Yu, and D. J. Yoo, "Advanced Nafion nanocomposite membrane embedded with unzipped and functionalized graphite nanofibers for high-temperature hydrogen-air fuel cell system: the impact of filler on power density, chemical durability and hydrogen permeability of membrane", Compos. Part B Eng., Vol. 215, 2021, pp. 108828, doi: https://doi.org/10.1016/j.compositesb.2021.108828.   DOI
18 A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Artificially designed, low humidifying organic-inorganic(SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells", Compos. Part B Eng., Vol. 130, 2017, pp. 103-113, doi: https://doi.org/10.1016/j.compositesb.2017.07.042.   DOI
19 E. Gulzow and M. Schulze, "Long-term operation of AFC electrodes with CO2 containing gases", J. Power Sources, Vol. 127, No. 1-2, 2004, pp. 243-251, doi: https://doi.org/10.1016/j.jpowsour.2003.09.020.   DOI
20 E. Agel, J. Bouet, and J. F. Fauvarque, "Characterization and use of anionic membranes for alkaline fuel cells", J. Power Sources, Vol. 101, No. 2, 2001, pp. 267-274, doi: https://doi.org/10.1016/S0378-7753(01)00759-5.   DOI
21 B. N. Lee, A. Kodir, H. Lee, D. Shin, and B. Bae, "Preparation and characterization of the polymeric antioxidant for improving the chemical durability of polymer electrolyte membranes", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 308-314, doi: https://doi.org/10.7316/KHNES.2021.32.5.308.   DOI
22 S. Xu, W. Wu, R. Wan, W. Wei, Y. Li, J. Wang, X. Sun, and R. He, "Tailoring the molecular structure of pyridine-based polymers for enhancing performance of anion exchange electrolyte membranes", Renew. Energ., Vol. 194, 2022, pp. 366-377, doi: https://doi.org/10.1016/j.renene.2022.05.071.   DOI
23 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells", ACS Sustain. Chem. Eng., Vol. 9, No. 26, 2021, pp. 8824-8834, doi: https://doi.org/10.1021/acssuschemeng.1c01978.   DOI
24 H. Ranganathan, M. Vinothkannan, A. R. Kim, V. Subramanian, M. S. Oh, and D. J. Yoo, "Simultaneous im- provement of power density and durability of sulfonated poly(ether ether ketone) membrane by embedding CeO2-ATiO2: a comprehensive study in low humidity proton exchange membrane fuel cells", Int. J. Energy Res., Vol. 46, No. 7, 2022, pp. 9041-9057, doi: https://doi.org/10.1002/er.7781.   DOI
25 L. Liu, C. Tong, Y. He, Y. Zhao, and C. Lu, "Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell", J. Membr. Sci., Vol. 487, 2015, pp. 99-108, doi: https://doi.org/10.1016/j.memsci.2015.03.077.   DOI
26 S. Du, S. Li, N. Xie, Y. Xu, Q. Weng, X. Ning, P. Chen, X. Chen, and Z. An, "Development of rigid side-chain poly(ether sulfone)s based anion exchange membrane with multiple annular quaternary ammonium ion groups for fuel cells", Polymer, Vol. 251, 2022, pp. 124919, doi: https://doi.org/10.1016/j.polymer.2022.124919.   DOI
27 L. Liu, Q. Li, J. Dai, H. Wang, B. Jin, and R. Bai, "A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability", J. Membr. Sci., Vol. 453, 2014, pp. 52-60, doi: https://doi.org/10.1016/j.memsci.2013.10.054.   DOI
28 Y. Shen, L. Maurizi, G. Magnacca, V. Boffa, and Y. Yue, "Tuning porosity of reduced graphene oxide membrane materials by alkali activation", Nanomaterials, Vol. 10, No. 11, 2020, pp. 2093, doi: https://doi.org/10.3390/nano10112093.   DOI
29 J. Liu, X. Yan, L. Gao, L. Hu, X. Wu, Y. Dai, X. Ruan, and G. He, "Long-branched and densely functionalized anion exchange membranes for fuel cells", J. Membr. Sci., Vol. 581, 2019, pp. 82-92, doi: https://doi.org/10.1016/j.memsci.2019.03.046.   DOI
30 S. D. Sajjad, Y. Hong, and F. Liu, "Synthesis of guanidinium-based anion exchange membranes and their stability assessment", Polym. Adv. Technol., Vol. 25, No. 1, 2014, pp. 108-116, doi: https://doi.org/10.1002/pat.3211.   DOI
31 X. Mao, Z. Li, G. He, Z. Li, J. Zhao, Y. Zhang, and Z. Jiang, "Enhancing hydroxide conductivity of anion exchange membrane via incorporating densely imidazolium functionalized graphene oxide", J. Solid. State. Chem., Vol. 333, 2019, pp. 83-92, doi: https://doi.org/10.1016/j.ssi.2019.01.023.   DOI
32 J. Liu, R. Qu, P. Peng, W. Liu, D. Chen, H. Zhang, and X. Liu, "Covalently functionalized graphene oxide and quaternized polysulfone nanocomposite membranes for fuel cells", RSC Adv., Vol. 6, No. 75, 2016, pp. 71305-71310, doi: https://doi.org/10.1039/C6RA12822J.   DOI
33 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application", Int. J. Energy Res., Vol. 43, No. 10, 2019, pp. 5333-5345, doi: https://doi.org/10.1002/er.4610.   DOI
34 K. F. L. Hagesteijn, S. Jiang, and B. P. Ladewig, "A review of the synthesis and characterization of anion exchange membranes", J. Mater. Sci., Vol. 53, 2018, pp. 11131-11150, doi: https://doi.org/10.1007/s10853-018-2409-y.   DOI
35 A. M. A. Mahmoud and K. Miyatake, "Highly conductive and alkaline stable partially fluorinated anion exchange membranes for alkaline fuel cells: effect of ammonium head groups", J. Membr. Sci., Vol. 643, 2022, pp. 120072, doi: https://doi.org/10.1016/j.memsci.2021.120072.   DOI
36 M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, and A. Olabi, "Environmental aspects of fuel cells: a review", Sci. Total Environ., Vol. 752, 2021, pp. 141803, doi: https://doi.org/10.1016/j.scitotenv.2020.141803.   DOI
37 G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: a review", J. Membr. Sci., Vol. 377, No. 1-2, 2011, pp. 1-35, doi: https://doi.org/10.1016/j.memsci.2011.04.043.   DOI
38 K Tammeveski and J. H. Zagal, "Electrocatalytic oxygen reduction on transition metal macrocyclic complexes for anion exchange membrane fuel cell application", Current Opinion in Electrochemistry, Vol. 9, 2018, pp. 207-213, doi: https://doi.org/10.1016/j.coelec.2018.04.001.   DOI
39 P. Gouerec, L, Poletto, J, Denizot, E. Sanchez-Cortezon, and J. H. Miners, "The evolution of the performance of alkaline fuel cells with circulating electrolyte", J. Power Sources, Vol. 129, No. 2, 2004, pp. 193-204, doi: https://doi.org/10.1016/j.jpowsour.2003.11.032.   DOI
40 M. Liu, X. Hu, B. Hu, L. Liu, and N. Li, "Soluble poly(aryl piperidinium) with extended aromatic segments as anion exchange membranes for alkaline fuel cells and water electrolysis", J. Membr. Sci., Vol. 642, 2022, pp. 119966, doi: https://doi.org/10.1016/j.memsci.2021.119966.   DOI
41 J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", J. Membr. Sci., Vol. 611, 2020, pp. 118385, doi: https://doi.org/10.1016/j.memsci.2020.118385.   DOI
42 Q. Chen, J. Luo, J. Liao, C. Zhu, J. Li, J. Xu, Y. Xu, H. Ruan, and J. Shen, "Tuning the length of aliphatic chain segments in aromatic poly(arylene ether sulfone) to tailor the micro-structure of anion-exchange membrane for improved proton blocking performance", J. Membr. Sci., Vol. 641, 2022, pp. 119860, doi: https://doi.org/10.1016/j.memsci.2021.119860.   DOI