• Title/Summary/Keyword: 4차원 시뮬레이션

Search Result 354, Processing Time 0.028 seconds

Realistic Skin Rendering for 3D Facial Makeup (3차원 얼굴 메이크업을 위한 사실적인 피부 렌더링)

  • Lee, Sang-Hoon;Kim, Hyeon-Joong;Choi, Soo-Mi
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2013
  • Makeup simulation is a tool that tests various makeup methods on a virtual digital face using input and display devices. Although several simulation systems supporting various makeup styles have been recently developed, most systems have many limitations on realistic skin representations because they use 2D facial images. We develope a realistic makeup simulation method which can control skin reflectance and roughness parameters. The method allows a user to simulate makeup applications while changing skin parameters using high-resolution facial data acquired by 3D scanners. Besides we use a point-based shape representation which enables simple and flexible 3D rendering, and provide a more realistic makeup simulation by applying different skin parameters on each part of the face.

A Study on algorithm for autonomous navigation of unmanned ground vehicle and its 3D graphical simulation (무인자동차의 안정성 기반 자율주행 알고리즘 및 3차원 그래픽 시뮬레이션 연구)

  • Cho, Young-Wan
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.324-331
    • /
    • 2010
  • 본 논문에서는 무인자동차의 자율주행을 위한 알고리즘을 제시하고 3차원 그래픽 시뮬레이션을 통하여 안정성 기반 자율주행 알고리즘의 성능을 검증하고자 한다. 제안된 자율주행 알고리즘은 주변 인접 차량의 위치, 속도, 가속도, 주행 차로 정보를 바탕으로 자율주행 차량과의 충돌가능성 및 충돌예측시간을 계산하여 최적의 안정 주로를 선택하고 이러한 주행 차로에 대한 주행 궤적을 생성하여 추종토록 함으로써 자율주행이 이루어지도록 한다. 본 논문에서는 제안된 자율주행 알고리즘을 검증하기 위하여 3차원 그래픽 시뮬레이션 환경을 구축하였으며 다차로, 다차량 주행 환경에서 몇 가지 가상 도로 환경을 구축하여 시뮬레이션 하였고 자율주행 차량의주행 궤적을 인접 주행차량의 주행 궤적과 비교 확인함으로써 알고리즘의 타당성을 검증하였다. 시뮬레이션 결과 제시된 안정성 기반 자율주행 알고리즘은 다차로, 다차량 주행 환경에서 주변 차량과 충돌 없이 안정적인주행 성능을 보여주는 것을 확인할 수 있었다.

Applying Fractals and Agent-Based Simulation to Explore the Role of Terrain in Combat Effectiveness (프랙탈 차원과 에이전트 기반 시뮬레이션을 이용한 지형이 전투효과에 미치는 영향 연구)

  • Cho, Sung-Jin;Lee, Sang-Heon
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.21-28
    • /
    • 2009
  • In the past, most of battle occurred in flatland and simple military force size gave a big influence in combat result. However, after the World War I, most of battles took place at the various terrain features such as forest, downtown, jungle and many others. Therefore, terrain factor exerts big influence on battle with weapon system in the ground warfare. However, effect of terrain has been explained only by quantitative manner in the battle. Furthermore, combat simulation and modeling applied a method that lower the combat capability of battle factors. In this paper, we present instrumentation that evaluate impact of terrain using fractal dimension. We determine the fractal dimension value by the "box counting dDimension" and density to calculate impact of terrain. Furthermore, we analyzed correlation with fractal dimension and density for battle result that obtained from the EINSTein model which is an agent-based simulation. We compare with 'Stalingrad battle' result out of battle example and analyzed. This study presented a method combat effectiveness that effect of terrain calculate quantitatively using fractal dimension.

Visualization and Optimization of Construction Schedule Considering the Geological Conditions in the Complicated Underground Cavern (지하비축기지 건설시 지질조건을 고려한 건설공정의 가시화와 최적화 사례)

  • Choi, Yong-Kun;Park, Joon-Young;Lee, Sung-Am;Kim, Ho-Yeong;Lee, Hee-Suk;Lee, Seung-Cheol
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.167-173
    • /
    • 2009
  • Underground storage cavern is known as the most complicated underground project because of the complexity of construction schedule, tunnel size, and geological problems. In order to optimize the construction schedule of underground storage cavern, two up-to-date technologies were applied. The first technology was 3 dimensional visualization of complicated underground structures, and the second was 4 dimensional simulation considering construction resources, geological conditions and construction schedule. This application case shows that we can achieve optimized construction schedule in the ways to optimize the number of work teams, fleets, the sequence of tunnel excavation, the commencement time of excavation and the hauling route of materials and excavated rocks. 3 dimensional modeling can help designer being able to understand the status of complicated underground structures and to investigate the geological data in the exact 3 dimensional space. Moreover, using 4 dimensional simulation, designer is able to determine the bottle neck point which appear during hauling of excavated rocks and to investigate the daily fluctuation in cost.

Performance Tests of 3D Data Models for Laser Radar Simulation (레이저레이더 시뮬레이션을 위한 3차원 데이터 모델의 성능 테스트)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.97-107
    • /
    • 2009
  • Experiments using real guided weapons for the development of the LADAR(Laser radar) are not practical. Therefore, we need computing environment that can simulate the 3D detections by LADAR. Such simulations require dealing with large sized data representing buildings and terrain over large area. And they also need the information of 3D target objects, for example, material and echo rate of building walls. However, currently used 3D models are mostly focused on visualization maintained as file-based formats and do not contain such semantic information. In this study, as a solution to these problems, a method to use a spatial DBMS and a 3D model suitable for LADAR simulation is suggested. The 3D models found in previous studies are developed to serve different purposes, thus, it is not easy to choose one among them which is optimized for LADAR simulation. In this study, 4 representative 3D models are first defined, each of which are tested for different performance scenarios. As a result, one model, "Body-Face", is selected as being the most suitable model for the simulation. Using this model, a test simulation is carried out.

  • PDF

Optimal Location Allocation of CCTV Using 3D Simulation (3차원 시뮬레이션을 활용한 CCTV 최적입지선정)

  • PARK, Jeong-Woo;LEE, Seong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.92-105
    • /
    • 2016
  • This study aims to establish a simulation method for CCTV (Closed Circuit Television) sight area. The simulation incorporates variables for computing CCTV sight area including CCTV specifications and installation. Currently CCTV is used for traffic, crime prevention and fire prevention by local governments. However, new locations are selected by administrator decision rather than analysis of the optimal location. In order to determine optimum location, a method to CCTV compute range is needed, which incorporates specifications according to CCTV purpose. For this purpose, limitations of previous research methods must be recognized and the simulation method must supplement these limitations. Here in this study, we derived CCTV sight area variables for realistic analysis to complement the limitations of previous studies. A total of eight elements were derived from image device sensors and installation: wide angle, height, angle, setting height, setting angle, and others. This research implemented a 3D simulation technique that can be applied to the derived factors and automate them using ArcObject and Visual C#. This simulation method can calculate sight range in accordance with CCTV specifications. Furthermore, when installing additional CCTVs, it can derive optimal allocation position. The results of this study will provide rational choices for specification selection and CCTV location by interagency collaborative projects.

A Study on 2D Pattern Design Module and 3D Cloth Simulation System based on Octree Space Subdivision Method (2차원 패턴 디자인 모듈과 Octree 공간 분할 방법을 이용한 3차원 의복 시뮬레이션 시스템에 관한 연구)

  • Kim, Ju-Ri;Joung, Suck-Tae;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.527-536
    • /
    • 2007
  • This paper proposes a 3D fashion design system that generates a 3D clothes model by using 2D patterns of clothes and drapes the 3D clothes model on a 3D human model. In the proposed system, 2D patterns of clothes are designed by selecting comer points of 2D mesh. After designing 2D patterns, a 3D clothes model is designed by describing the control points to be connected between 2D patterns. The proposed system reads a 3D human body model file and the designed 3D clothes model and creates a 3D human model putting on the clothes by using the mass-spring model based physical simulation. It calculates collision and reaction between the triangles of human body model and those of clothes for realistic simulation. Because the number of triangles is very large, the collision and reaction processing need a lot of time. To solve this problem, the proposed system decreases the number of collision and reaction processing by using the Octree space subdivision technique. It took a few seconds for generating a 3D human model putting on the designed 3D clothes.

  • PDF

The left ventricle wall motion simulation during systolic and diastolic stages of the heart (심장의 수축 및 이완기에서의 좌심실 벽 움직임 시뮬레이션)

  • 최수미
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.138-142
    • /
    • 1999
  • 심장의 수축 및 이완기에서의 좌심실 벽 움직임은 허혈 및 심근경색증과 같은 심장질환에서 영상적 진단의 주요한 특징이다. 심장은 동적 기관으로써 진단을 위해서는 속도와 같은 4차원 파라미터의 추정이 필요하다. 본 논문에서는 심장의 좌심실 형태 및 움직임을 모델링하여 동적으로 가시화하는 방법을 제시한다. 본 논문에서는 좌심실을 Dynamic Gaussian Blob 모델로 근사화하였다. 이 모델은 가우시안 함수 기반 FEM 요소와 superellipsoid를 통합한 것으로 좌심실의 형태 및 벽의 움직임을 물리기반 방법에 의해 묘사할 수 있다. 즉, 일련의 영상들로부터 좌심실 벽에 대응되는 3차원 점들을 추출한 후 이 점들에 작용되는 힘에 의해 박동하는 좌심실의 움직임을 추적한다. 이와 같은 좌심실 벽 움직임 시뮬레이션은 심장 움직임에 이상이 있는 질환의 진단을 위한 빠르고 간편한 보조 도구로써 사용되어질 수 있다.

  • PDF

3D Simulation Study of Biped Robot Balance Using FPE Method (FPE 방식을 활용한 이족 로봇 균형 유지 3차원 시뮬레이션 연구)

  • Jang, Tae-ho;Kim, Youngshik;Ryu, Bong-Jo
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.815-819
    • /
    • 2018
  • In this study, we investigate balance of a biped robot applying Foot Placement Estimator (FPE) in simulation. FPE method is used to determine a stable foot location for balancing the biped robot when an initial orientation of the robot body is statically unstable. In this case, the 6-DOF biped robot with point foot is modelled considering contact and friction between foot and the ground. For simulation, the mass of the robot is 1 kg assuming the center of robot mass (COM) is located at the center of the robot body. The height from the ground to the COM is 1 m. Robot balance is achieved applying stable foot locations calculated from FPE method using linear and angular velocities, and the height of the COM. The initially unstable angular postures, $5^{\circ}$ and $-5^{\circ}$, of the robot body are simulated. Simulation results confirm that the FPE method provides stable balance of the robot for all given unstable initial conditions.