• Title/Summary/Keyword: 4절 기구

Search Result 64, Processing Time 0.03 seconds

Design of variable 4-bar linkage structure for adjustable driving angle (구동 각도 조절이 가능한 가변형 4절링크 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.591-596
    • /
    • 2022
  • Since 4-bar linkage widely used in various industrial fields has a fixed link length, it is inconvenient to add an independent link structure or control device to change the movement of output link. Therefore, this paper proposes a new concept of variable 4-bar linkage mechanism to selectively adjust the movement of the output link to fit desired situations, and applied to the commercial table fans, which is a representative product using a 4-bar linkage system. The optimal rotation angle steps for efficiency are determined experimentally and the appropriate lengths of linkage to fit each step are calculated analytically. Changes in the linkage length are implemented by the rotational motion using a grooved cylindrical cam and the feasibility of the proposed variable linkage mechanism is verified through fabrication and measurement. The presented variable link mechanism is expected to improve the efficiency of industrial robots and fuel valve systems.

Design of Leg Length for a Legged Walking Robot Based on Theo Jansen Using PSO (PSO를 이용한 테오얀센 기반의 보행로봇 다리설계)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.660-666
    • /
    • 2011
  • In this paper, we proposed a Particle Swarm Optimization(PSO) to search the optimal link lengths for legged walking robot. In order to apply the PSO algorithm for the proposed, its walking robot kinematic analysis is needed. A crab robot based on four-bar linkage mechanism and Jansen mechanism is implemented in H/W. For the performance index of PSO, the stride length of the legged walking robot is defined, based on the propose kinematic analysis. Comparative simulation results present to illustrate the viability and effectiveness of the proposed method.

Feasible Design Area of 4 Bar Input Crank for 3 Position Synthesis of Watt-II 6 Bar Mechanism (6 절기구 응용을 위한 3 위치 운동 생성용 4절 가구 합성을 위한 입력 크랭크의 합당해 영역)

  • 범진환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 1998
  • In many automatization applications, a rigid body is required to go forward and backward repeatedly through a set of given position/orientations precisely while a crank is rotated. Such a motion can be generated by 6 bar mechanism adding a dyad to a 4 bar mechanism. If this is the case for 3 position synthesis of the 4 bar mechanism, the feasible solution area for designing the 4 bar mechanism will be limited over the general solution area. This paper proposes a procedure to synthesize 4 bar mechanism to be used to generate the required motion. It is found that the only input crank of the 4 bar mechanism should be limited to satisfy the condition. And the feasible design area for the circle point/ center point of the input crank is identified so that design of the undesired mechanism could be avoided. The method is tested and the results are shown.

  • PDF

Mechanism synthesis of Planar Four-bar Linkage for rigid body guidance by bushing elements (부싱 요소를 이용한 평면 4 절 기구의 강체 유도 기구 합성)

  • Yoo, Hong Hee;Hong, Jung Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.464-466
    • /
    • 2014
  • The mechanism synthesis methods, graphical, analytical and computer-aided technique have been proposed for selecting and scaling mechanical system. According to developing computation tools, mechanism could be synthesized much faster and more correct than previous analytical ways by improved techniques. In this paper, the improved synthesis method is proposed to solve body guidance synthesis problem. To perform the mechanism synthesis for body guidance, a planar linkage is modeled as a set of free three bushings located in design space. The values of bushing stiffness and x, y position of bushings yielding a desired functional requirement related to input motion are found by using an optimization technique.

  • PDF

얀센 메커니즘 기반 Centroid와 Stability를 고려한Line tracing 로봇설계

  • Kim, Jong-Jin;Park, Dong-Mun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.574-578
    • /
    • 2017
  • 본 연구는 4절 링크 이론(four-bar likage mechanism)과 얀센 메커니즘(Jansen mechanism)을 기반으로 다관절 보행로봇을 제작하고, 로봇의 움직임에 대하여 기구학적인 해석을 제시한다. 또한 라인 트레이싱(Line tracing) 방법을 활용한 자동주행 설계를 위해 아두이노 호환 보드와 적외선 센서 4개를 보행로봇에 부착하여 자동 주행 로봇을 제작하였다.

  • PDF

착륙장치 기구학 해석을 위한 해영역 특성분석 연구

  • Ahn, Seok-Min;Choi, Sun-Woo;Park, Il-Kyung;Kwon, Tae-Hee
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • The 4-bar linkage is the simplest model for the simulation of a retractable landing gear. In general, a designer uses a commercial software to design a linkage, which requires tedious iterations to obtain a good solution. By applying synthesis methodology the iteration process can be reduced remarkably. However, most of solutions obtained using synthesis process may not be an optimized solution. In this study, the characteristics of the optimization solution domain has been analyzed so that an optimization process can be adapted easily to a synthesis process.

  • PDF

Elimination of Branch Problem in Driving Crank Center point Plane for 3 Position Synthesis of 4 bar Mechanism (4절 기구의 3 위치 합성을 위한 구동 크랭크 고정점 영역상에서의 분기문제 해결)

  • Borm, Jin-Hwan;Kim, Hak-Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.80-86
    • /
    • 1995
  • A method of eliminating the branch problem in driving crank center point plane for 3 position synthesis of 4 bar mechanism is introduced. By studying various transformation characteristics from the circle point plane into the center poi t plane, the curves in the center point plane transformed from the filemon line in circle point plane are analytically obtained, which will seperate the whole center point plane into many sub-areas for the selec- tion of the center point of the driving crank. And a simple method to identify which of the sub-areas will cause the branch problem is also presented. The method will allow the selection of the center point of driving crank without the branch problem.

  • PDF

Stiffness Analysis in a Redundantly Actuated Four-Bar Mechanism (잉여구동을 지닌 4절 기구에서의 강성효과에 대한 해석)

  • 이병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.846-855
    • /
    • 1994
  • An effective stiffness, analogous to that of a wound spring, can be created by antagonistic redundant actuation of general closed-chain mechanisms. The qualitative and quantitative characteristics of the effective stiffness are investigated through a Four-bar mechanism, and a load distribution method is introduced which simultaneously guarantees the required system motion and the effective stiffness of the Four-bar mechanism. Furthermore, a simulation is performed to understand the inter-relationship among the effective stiffness, the Four-bar geometry, and the actuation effort. Based on this analysis, the Four-bar synthesis problem for effective stiffness generation is discussed.

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism(II) (4절 링크 기구의 동적 변형 해석 (II))

  • 조선휘;박종근;주동인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.910-923
    • /
    • 1992
  • Experimental verification of numerical results is conducted by measuring the dynamic strains of mid-points of the coupler and the lever for the 4-bar linkage mechanism with rigid bearing and flexible bearing, respectively. For the axial strain of lever mid-point, the numerical results including geometric stiffness almost agree with the experimental ones, however, the numerical results excluding geometric stiffness almost agree with the experimental ones for the axial strain of coupler mid-point. It is supposed that these phenomena should be caused by the fact that the motion of the coupler is more complicated than of the lever. The signals of dynamic strains of coupler and lever mid-points, measured by strain gages, are transformed into frequency domain by fast fourier transformer. From this experiment, the lst resonance frequencies of the coupler and the lever are obtained. It is made clear that the former almost agrees with the fundamental and the latter the 2nd mode natural frequency of the mechanism system calculated by numerical analysis.