• Title/Summary/Keyword: 4,4-Dimethylformamide

Search Result 156, Processing Time 0.025 seconds

Complexation of Pyridino-Azacrown Ethers with Alkali Metal Ions in N,N-Dimethylformamide (N,N-디메틸포롬아미드 용액에서의 알칼리금속이온과 피리디노-아자크라운에테르와의 착물화 반응)

  • Kim, Dong Won;Shin Young-Kook;Kim Chang Suk;Oh Je Jik;Jeon Young Shin;Kim, Tae Seung
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.669-673
    • /
    • 1992
  • The stability constants, K for the complexation of alkali metal cations(Li^+, Na^+, K^+, Rb^+, and Cs^+) with both 4,5: 13,14-dibenzo-6,9,12-triaza-bicyclo [15,3,1] heneicosa-1 (21),7,19-trioxa-2,16-dione (DBPDA) and 6,9,12-trioxa-3,15,21-triaza bicyclo [15,3,1] heneicosa-1 (21),17,19-triene-2,16-dione (PDA) in N,N-Dimethylformamide (DMF) were determined conductomatically at various temperatures. At all the experiment temperatures, the K value sequences of the alkali metal ions with DBPDA and PDA are Cs^+ > K^+ > Rb^+ > Li^+ > Na^+ and Cs^+ > K^+ > Rb^+ > Li^+ > Na+, respectively. The K values for DBPDA are larger those of PDA for alkali metal ions. The widely recounted "hole-size-selectivity" principle is not applicable to these complexation systems. From the K values obtained at different temperatures, {\delta}H and T{\delta}S for these complexation reactions were determined. The enthalpy change plays principal important role in the complex formation by DBPDA. However, in the case of PDA, the entropy change also contributes to its complex formation.

  • PDF

Kinetics of the Reaction of Phenacyl Bromide with Anilines in Methanol and Dimethylformamide (Phenacyl Bromide와 置換아닐린類와의 反應에 關한 反應速度論的 硏究)

  • Soo-Dong Yoh;Doo-Jung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.376-382
    • /
    • 1981
  • The rates and the activation parameters for the reaction of phenacyl bromide with substituted anilines in methanol and dimethylformamide were measured. The effects of substituted anilines were discussed. The rate of the reaction was increased with the electron donating power of substituent and showed larger value in DMF than in MeOH. The isokinetic relationship was shown between ${\delta}H^{\neq}$ and ${\delta}S^{\neq}$, isokinetic temperature was 539 and $400^{\circ}C$ in MeOH and DMF respectively, but p-nitro aniline was deviated from linearity in both solvents caused by solvent effects. The excellent linear relationship between log k and p$K_a$ of substituted anilines was observed by following equation. log k = 0.57p$K_a$-1.28 (r = 0.996) in MeOH at $45^{\circ}C$, log k = 0.65p$K_a$-0.88 (r = 0.970) in DMF at $45^{\circ}C$. From the Hammett plot, this reaction was a nucleophilic displacement of aniline to phenacyl bromide and the following equation was obtained at $45^{\circ}C$. log k/$k_0$ = -2.00${\sigma}$ + 0.06 (r = 0.985) in MeOH; log k/$k_0$ = -2.22${\sigma}$ + 0.08 (r = 0.995) in DMF. Large deviation of p-nitro aniline in DMF is resulted from solvent effects too. From above results, the substituent effect of this reaction can be described as $S_N2$ mechanism and bond formation more proceeds in DMF relative to MeOH.

  • PDF

Studies on the Quaternization of Tertiary Amines (Ⅱ). Kinetics and Mechanism for the Reaction of Substituted Phenacyl Bromides with Substituted Pyridines (3차 아민의 4차화반응에 관한 연구 (제2보). 치환 브롬화페나실류와 치환 피리딘류와의 반응에 관한 반응속도론적 연구)

  • Yoh Soo Dong;Kwang Taik Shim;Lee Kyung A
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.110-118
    • /
    • 1981
  • Kinetics and mechanism for the reaction of substituted phenacyl bromides with substituted pyridines have been determined at 25, 35 and $45^{\circ}C$ in methanol and dimethylformamide by the conductivity method. The rate constants for the reaction of various pyridines with phenacyl bromide shown that electron-donating substituents in the pyridine increase the rate, while electron-attracting one decrease in both solvents. The effect of substituents in substrate, the rate being increased by electron-attracting substituents. This is as expected for nucleophilic attack of amines on the carbon atom. Isokinetic and $Br{\psi}nsted$ linear relationship were shown in the reaction of phenacyl bromide with pyridines in both solvent in which isokinetic temperature were obtained 614, $202^{\circ}K$ and ${\beta}$ values were 0.29, 0.36 in methanol and dimethylformamide respectively. In the case of the reaction of substituted phenacyl bromide with pyridines, isokinetic temperature decreases with increasing electron-attracting ability of the substituents in the phenacyl bromide, while the ${\beta}$ values were reverse. From the above results, it can be inferred that N…C bond formation decreases progressively from p-chloro- to p-methoxyphenacyl bromide and the bond formation predominates in DMF than methanol. The ${\rho}$ values of Hammett equation of the reaction of phenacyl bromide with substituted pyridines are negative in both solvent, but its value was larger negative in DMF than methanol and the ${\rho}$ value of that of substitutted substrates with pyridine was 0.3, the low value is ascribed to direct $S_N2$ attack of the nitrogen atom in pyridine ring at the methylene carbon.

  • PDF

Desorption Efficiencies and Storage Stabilities of Ketones in Work Environment (작업장에서 발생되는 케톤류 유기화합물의 탈착효율 및 저장안정성)

  • Kim, Kangyoon;Choi, Sungpil;Ha, Chul-Joo;Choi, Ho-Chun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.211-221
    • /
    • 2006
  • This study was performed to compare with desorption efficiency and storage stability of CSC and CMS tubes for Ketones in workplace air. 1. The best desorbing solution for CSC tube was 1 % or 3 % dimethylformamide(DMF) in carbon disulfide($CS_2$). The desorption efficiencies were 96.40 % for cyclohexanone, 94.86 % for acetone, 96.96 % for methyl ethyl ketone(MEK), 103.44 % for methyl isobutyl ketone(MIBK), 100.17 % for methyl amyl ketone(MAK), 100.43 % for methyl butyl ketone(MBK), 97.01 % for toluene and 99.33 % for trichloroethylene(TCE). 2. The best desorbing solution for CMS tube was 1 % or 3 % DMF in $CS_2$. The desorption efficiencies were 96.42 % for cyclohexanone, 98.53 % for acetone, 99.67 % for MEK, 105.48 % for MIBK, 100.13 % for MAK, 100.13 % for MBK, 95.42 % for toluene and 98.15 % for TCE. 3. In the storage condition at room temperature($20^{\circ}C$), the recovery rates of cyclohexanone and MEK on CSC tube were rapidly decreased 30.9 % and 50.9 % after 4 weeks, respectively. The recovery rates of all of 6 ketones and 2 nonpolar solvents were shown over 80 % after 1 week in the storage condition of refrigerate temperature($-4^{\circ}C$), and were kept over 80 % after 4 weeks in the storage condition of freezer temperature($-20^{\circ}C$). 4. The recovery rates of cyclohexanone on CMS tube were 80.6 % for 1 week after and 60.5 % for 4 weeks after at room temperature($20^{\circ}C$). The recovery rates of cyclohexanone were shown 80.6 % for 1 week after and 60.5 % for 4 weeks after at $-4^{\circ}C$, and of 6 ketones and 2 non-polar solvents were kept stable over 85 % at $-4^{\circ}C$ and over 97 % at $-20^{\circ}C$ for 4 weeks after. In conclusion, the best desorbing solution was 1 % or 3 % DMF in $CS_2$ and more appropriate sorbent tube for ketones and non-polar solvents was CMS than CSC. We recommend CSC tube would be useful if the samples analyzed within 1 week because CMS tubes are more expensive than CSC tubes. However, if the storage time is needed more than 3 weeks, CMS tubes should be suitable and the storage condition should be below $-20^{\circ}C$.

Study on Formation and Properties of Dioxomolybdenum Complexes (디옥소몰리브덴 착물의 합성과 그 성질에 대한 연구)

  • Sang-Oh Oh;Bon-Kweon Koo
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.441-448
    • /
    • 1986
  • Dioxobis(sub.-salicylaldiminato) molybdenum (VI) complexes, $MoO_2\;(X-sal-N-R)_2,\;(X=H,\;5-CH_3,\;R=C_6H_5,\;p-F-C_6H_4,\;m-Cl-C_6H_4,p-I-C_6H_4\;and\;p-C_2H_5-C_6H_4)$, have been prepared by reactions of dioxobis(sub.-salicylaldehydato) molybdenum (VI), $MoO_2(X-sal)_2$ with primary amines, in which $MoO_2(X-sal)_2$ complexes were obtained by acidification of a mixture solution of ammonium paramolybdate in water and appropriate salicylaldehyde in methanol. All these complexes show two strong Mo=O stretching imodes in the 900-940$cm^{-1}$ and p.m.r. spectra exhibited only one signal for the azomethine group. These results confirmed that the complexes are six-coordinated octahedron with a $cis-MoO_2$ group and the geometrical configurations of the complexes possess a C2 axis of symmetry. From the mass analyses of the complexes, it found that the composition ratios of $MoO_2$ : ligand are 1 : 2. The charge transfer transition corresponding to N-Mo, and O-Mo occured at 29,000$cm^{-1}$ and 32,000$cm^{-1}$ respectively. Where, the complexes were found to be non-ionic materials by conductivity measurements in dimethylformamide.

  • PDF

Recovery of Paraffin Components from Pyrolysis Oil Fraction of Waste Plastic by Batch Cocurrent 4 Stages Equilibrium Extraction (회분 병류 4단 평형추출에 의한 폐플라스틱 열분해유 유분 중의 파라핀 성분의 회수)

  • Kang, Ho-Cheol;Shin, Sung Soon;Kim, Doo Han;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.630-634
    • /
    • 2018
  • The recovery of paraffin components contained in the fraction as a part of improving the quality for the fraction of waste plastics pyrolysis oil (WPPO) was investigated by batch cocurrent 4 stages equilibrium extraction. The fraction at a distilling temperature of $120-350^{\circ}C$ recovered from WPPO by the simple distillation and a little water-added dimethylformamide (DMF) solution were used as a raw material and solvent, respectively. As the number of equilibrium extraction (n) and the carbon number of paraffin component increased, the concentration of paraffin component contained in the raffinate increased. The concentrations of $C_{12}$, $C_{14}$, $C16$ and $C_{18}$ paraffin components present in the raffinate recovered at n = 4 were about 1.2, 1.5, 1.6 and 1.8 times higher than those of using the raw materials, respectively. Recovery rates (residue rates present in raffinate) of paraffin components rapidly decreased with increasing n, and increased sharply with increasing the carbon number. Furthermore, it was possible to predict the recovery rates at n = 1 - 4 for all paraffin components ($C_7-C_{24}$) contained in the raw material. The raffinate recovered through this study is expected to be used as a renewable energy.

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO.;Fatoba, OO.;Totito, TC.;Roos, WD.;Petrik, LF.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.48-59
    • /
    • 2017
  • This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.

Mechanism for the Oxidation Reaction of Alcohols Using Cr(VI)-Pyrazine Complex (크롬(VI)-피라진 착물을 이용한 알코올류의 산화반응과 메카니즘)

  • Park, Young Cho;Kim, Young Sik
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.110-114
    • /
    • 2016
  • Cr(VI)-pyrazine complex (PZCC) was synthesized by the reaction of pyrazine with chromium (VI) trioxide in 6 M HCl. The structure was characterized using IR spectroscopy and inductively coupled plasma (ICP). The oxidation of benzyl alcohol using PZCC in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: N,N'-dimethylform-amide > acetone > chloroform > cyclohexene. In the presence of N,N'-dimethylformamide solvent with an acidic catalyst such as sulfuric acid ($H_2SO_4$ solution), PZCC oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. Hammett reaction constant (${\rho}$) was -0.70 (308 K). The observed experimental data were used to rationalize the hydride ion transfer in the rate-determining step.

Effect of few-walled carbon nanotube crystallinity on electron field emission property

  • Jeong, Hae-Deuk;Lee, Jong-Hyeok;Lee, Byung-Gap;Jeong, Hee-Jin;Lee, Geon-Woong;Bang, Dae-Suk;Cho, Dong-Hwan;Park, Young-Bin;Jhee, Kwang-Hwan
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.

Influence of oxyfluorination on activated carbon nanofibers for CO2 storage

  • Bai, Byong-Chol;Kim, Jong-Gu;Im, Ji-Sun;Jung, Sang-Chul;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.236-242
    • /
    • 2011
  • The oxyfluorination effects of activated carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Electrospun CFs were prepared from a polyacrylonitrile/N,N-dimethylformamide solution via electrospinning and heat treatment. The electrospun CFs were chemically activated in order to generate the pore structure, and then oxyfluorination was used to modify the surface. The samples were labeled CF (electrospun CF), ACF (activated CF), OFACF-1 ($O_2:F_2$ = 7:3), OFACF-2 ($O_2:F_2$ = 5:5) and OFACF-3 ($O_2:F_2$ = 3:7). The functional group of OFACFs was investigated using X-ray photoelectron spectroscopy analysis. The C-F bonds formed on surface of ACFs. The intensities of the C-O peaks increased after oxyfluorination and increased the oxygen content in the reaction gas. The specific surface area, pore volume and pore size of OFACFs were calculated by the Brunauer-Emmett-Teller and density functional theory equation. Through the $N_2$ adsorption isotherm, the specific surface area and pore volume slightly decreased as a result of oxyfluorination treatment. Nevertheless, the $CO_2$ adsorption efficiency of oxyfluorinated ACF improved around 16 wt% due to the semi-ionic interaction effect of surface modificated oxygen functional groups and $CO_2$ molecules.