• 제목/요약/키워드: 3dimension numerical analysis

검색결과 96건 처리시간 0.024초

구동륜(驅動輪)의 성능예측(性能豫測)에 적합한 토양변수(土壤變數)의 차원해석(次元解析)을 위한 차륜(車輪)-토양(土壤) 시스템의 상사성(相似性) 연구(硏究)(I) -견인력(牽引力) 예측(豫測) 분석(分析)- (A Similitude Study of Soil-Wheel System for Identifying the Dimension of Pertinent Soil Parameter(I) -Pull Prediction Analysis-)

  • 이규승;정창주
    • Journal of Biosystems Engineering
    • /
    • 제14권2호
    • /
    • pp.67-79
    • /
    • 1989
  • This study was conducted to investigate the applicability of true model theory for pull prediction in a powered lugged wheel-soil system and to examine the possibility of using principles of similitude in investigating the dimensions of soil parameters pertinent to a powered lugged wheel-soil system concerning the pull prediction. The following conclusions were derived from the study; 1) The pull of prototype wheels proved to be predicted by those of the model wheels for the range of the dynamic weight tested. The pull curves of models and prototype were respectively very similar in the shape. From this basic knowledge, it was enabled to apply the similitude theory to the performance prediction of the true model. 2) A conditional equation which can be used for the prediction of pull of prototype by model test was derived as follows. $n_f=n_1^{-b}$ where $n_f$ : force scale = $w/w_m$ $n_1$ : length scale = ${\ell}/{\ell}_m$ b : exponent on the length dimension of the soil property ${\alpha}$ The range of the numerical value of b, which was determined by the least square method, was found to be -2.0~-2.6. 3) Considering a relatively wide variation of b values in the pull prediction, b is considered to be a function of many variales. Thus it was concluded that there are several soil properties which are pertinent to the powered lugged-wheel-soil system concerning the pull prediction, and these soil properties may have the different effects on the pull of model and protytype wheels, to give the different dimension on the soil parameters.

  • PDF

Electro-Rheological 유체를 이용한 무한폭 스퀴즈 필름 댐퍼 해석 (Analysis of an Infinitely Long Squeeze Film Damper Operating with an Electro-Rheological Fluid)

  • 정시영;최승복;조용철
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.61-66
    • /
    • 1992
  • This paper addresses on the determination of damping coefficients of an infinitely long squeeze film damper operating with an electro-rheological (ER) fluid. The ER fluid behaves as Bingham fluid with an electric field dependent yield shear stress. AS phenomenological model of the fluid is adopted for the relationship between the yield shear and the intensity of the electric field imposed on the fluid domain. The model is then incorporated with the governing equation and associated boundary conditions of the squeeze film damper executing a circula centered orbit for the expression of dimension- less damping coefficients. Numerical simulation is performed to evaluate the performance improvement of the proposed squeeze film damper.

  • PDF

지하철 승강장 형식에 따른 정량적 화재 위험성 평가 (Quantitative Fire Risk Assesment for the Subway Platform Types)

  • 이동호;김하영
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.1-6
    • /
    • 2006
  • Subway platform is divided into Side-platform type and Center-platform type. In this study does quantitative fire risk assesment of subway platform types in numerical analysis by using CFD model. From the result of this study, 1) All exhaust mode was low-end result it seems most fire risk at Side-platform station. 2) All exhaust mode was low-end result it seems most fire risk at Center-Platform station. 3) When comparing same type exhaust mode of Side-platform and Center-platform that last thing was visible $9.1{\sim}72.34%$ low-end fire risk. Center-platform is more opera-tive than Side-platform that reduce fire risk when that was same dimension and external environment. Designer look upon a fire characteristic of subway platform types when he make smoke control air volume and platform area design.

Numerical Analysis of Unsteady Flow around a Transversely Oscillating Circular Cylinder

  • Moon, Ji-Soo;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권1호
    • /
    • pp.27-33
    • /
    • 2012
  • The relationship between the excitation frequency and the vortex shedding frequency is analyzed during the oscillation of the circular cylinder. Two-dimension unsteady Navier-Stoke's equation is calculated by using the Optimized High Order Compact (OHOC) scheme. The flow condition is Mach number 0.3 and Reynold's number 1000. From the results acquired by calculation, it can be inferred that, when the excitation frequency is near the vortex shedding frequency at the fixed cylinder wake, the oscillation frequency of lift and drag coefficients appears to lock-on. The lock-on refers to a phenomenon in which the aerodynamic coefficient appears as one primary oscillation frequency through excitation and its amplitude is amplified. In the non-lock-on zone, the excitation frequency is not in the lock-on mode anymore and beat is formed in which two or more primary oscillation frequencies of the aerodynamic coefficient are mixed together.

콘크리트 모듈러 도로 축하중 거동 분석을 통한 설계 타당성 검증 (Design Validation through Analysis of Concrete Modular Road Behavior under Static Axial Loads)

  • 남정희;김우석;김기현;김연복
    • 한국도로학회논문집
    • /
    • 제17권6호
    • /
    • pp.37-45
    • /
    • 2015
  • PURPOSES : The purpose of this study is to validate the design criteria of the concrete modular road system, which is a new semi-bridge-type concept road, through a comparison of numerical analysis results and actual loading test results under static axial loads. METHODS : To design the semi-bridge-type modular road, both the bridge design code and the concrete structural design code were adopted. The standard truck load (KL-510) was applied as the major traffic vehicle for the design loading condition. The dimension of the modular slab was designed in consideration of self-weight, axial load, environmental load, and combined loads, with ultimate limit state coefficients. The ANSYS APDL (2010) program was used for case studies of center and edge loading, and the analysis results were compared with the actual mock-up test results. RESULTS : A full-scale mock-up test was successfully conducted. The maximum longitudinal steel strains were measured as about 35 and 83.5 micro-strain (within elastic range) at center and edge loading locations, respectively, under a 100 kN dual-wheel loading condition by accelerating pavement tester. CONCLUSIONS : Based on the results of the comparison between the numerical analysis and the full-scale test, the maximum converted stress range at the edge location is 32~51% of the required standard flexural strength under the two times over-weight loading condition. In the case of edge loading, the maximum converted stresses from the Westergaard equation, the ANSYS APDL analysis, and the mock-up test are 1.95, 1.7, and 2.3 times of that of the center loading case, respectively. The primary reason for this difference is related to the assumption of the boundary conditions of the vertical connection between the slab module and the crossbeam module. Even though more research is required to fully define the boundary conditions, the proposed design criteria for the concrete modular road finally seems to be reasonable.

도로용 발전장치 최적화 설계를 위한 수치해석 (A Numerical Analysis for Optimal Design of Road Generator System)

  • 이석영
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.163-173
    • /
    • 2014
  • 본 연구에서는 도로용 발전장치 최적화 설계를 위해 실험과 수치해석을 다루었으며, 도로용 발전장치는 패드, 축, 토셔널 댐퍼, 일방향 클러치, 기어, 발전기 등의 여러 가지 기계요소를 포함한다. 본 수치해석은 도로용 발전장치의 성능을 평가하기 위하여 개발되었으며 소프트웨어에 의하여 이론적으로 계산된 결과값을 사용하여 최적화 설계의 변수인자를 결정하게 된다. 이러한 변수는 장치의 용량, 길이, 각도 등이며, 차량의 운전상태에 따라서 토오크, 출력 및 생성된 에너지값 등의 결과값을 비교하여, 도로용 발전장치를 설계하기 전 수치해석을 통해 제안된 개념과 시스템이 효율성과 신뢰성을 갖도록 한다.

열박음 로터에서 간섭량의 강성 효과 (Stiffness effect of fitting interference for a shrunk rotor)

  • 김영춘;박희주;박철현;김경웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.319-324
    • /
    • 2003
  • In general industrial rotating machinery is operated under 3,600 rpm as rotating speed and designed to have critical speed that is above operating speed. So, there was no problem to operate rotating machine under critical speed. But nowadays, they should be operated more than the frist critical speed as usual with the trend of high speed, large scale and hish precision in industries. In case of the large rotor assembly as the trend of large scale, using fitting method of disk or cylinder on shaft is rising for the convenience of assembly and cutting down of manufacturing cost. The shrink fitting is used to assemble lamination part on shaft for manufacturing of rotor of motor or generator in many cases and also is widely used for other machinery. In rotating system, which is compose of rotor and bearing, the critical speed is determined from inertia and stiffness for the rotor and bearings. In case of fitting assembly, analysis and design of the rotor is not easy because the rotor stiffness is determined depend on a lot of factors such as shaft material/dimension, disk material/dimension and assembled interference etc. Therefore designer who makes a plan for hish-speed rotating machine should design that the critical speed is located out of operating range, as dangerous factors exist in it. In order to appropriate design, an accurate estimation of stiffness and damping is very important. The stiffness variation depend on fitting interference is a factor that changes critical speed and if it's possible to estimate it, that Is very useful to design rotor-bearing system. In this paper, the natural frequency variation of the rotor depends on fitting interference between basic shaft and cylinder is examined by experimentation. From the result, their correlation is evaluated quantitatively using numerical analysis that is introduced equivalent diameter end the calculation criteria is presented for designer who design fitting assembly to apply with ease for determination of appropriate interference.

  • PDF

크리깅 기반 차원감소법을 이용한 베이지안 신뢰도 해석 (Bayesian Reliability Analysis Using Kriging Dimension Reduction Method(KDRM))

  • 안다운;최주호;원준호
    • 한국전산구조공학회논문집
    • /
    • 제21권3호
    • /
    • pp.275-280
    • /
    • 2008
  • 신뢰성 기반 형상 최적화(RBDO)글 위한 기술은 한정된 정보로 인한 인식론적 불확실성을 다룰 수 있는 베이지안 접근에 근거하여 발달된다. 최근까지, 전통적인 RBDO는 측정 데이터가 무한히 많아서 확실한 확률정보를 알고 있다는 가정 하에 실행되었다. 하지만 실제로는, 부족한 데이터로 인해 기존의 RBDO 방법의 유용성을 떨어뜨린다. 본 연구에서는, 확률정보의 불확실성을 인식하고, 따라서 산포를 갖게 되는 시스템 신뢰도의 확률 분포에서의 신뢰수준의 하한 값을 고려하기 위해 '베이지안 신뢰성'이 소개된다. 이런 경우, 베이지안 신뢰성 해석은 기존 신뢰도 해석의 이중 해석을 요구하게 된다. 크리깅 기반 차원 감소 방법(KDRM)은 신뢰도 해석을 위한 새로운 효율적인 방법으로써 사용되며, 제시된 방법은 몇 가지 수치예제를 사용하여 설명된다.

타이어 접지폭을 고려한 3차원 차량모델에 의한 도로교의 동적해석 (Dynamic Analysis of Highway Bridges by 3-D. Vehicle Model Considering Tire Enveloping)

  • 정태주
    • 대한토목학회논문집
    • /
    • 제26권6A호
    • /
    • pp.989-999
    • /
    • 2006
  • 본 연구에서는 차량과 교량을 3차원으로 모델링하고, 교량의 노면조도 및 교량과 차량 사이의 상호작용을 고려하여 이동 차량이 교량을 통과할 때 교량의 선형동적해석을 수행할 수 있는 수치해석방법을 제시하였다. 3차원 차량모델에는 타이어의 접지폭을 고려하여 탠덤 다판스피링 차륜축의 피칭을 고려하여 단일차량인 2축과 3축 차량 및 5축 트랙터-트레일러를 각각 7-자유도, 8-자유도 미 14-자유도로 모델링하였다. 차량의 운동방정식은 Lagrange 방정식을 사용하여 유도하였고, 그 해는 Newmark-${\beta}$법을 사용하여 계산하였다. 교량의 노면조도는 평균값이 영인 정상확율분포롤 가정한 지수스팩트럴밀도를 사용하여 생성시켰다. 교량은 주형을 보요소로, 콘크리트 바닥판은 쉴요소를 이상화시켰으며 주형과 콘크리트 바닥판 사이는 Ragid Link를 사용하여 3차원으로 모델링하였다. 교량의 운동방정시은 모우드 중첩법을 사용하여 풀었다. 본 연구에서 제시한 수치해석방법으로 구한 결과와 Whittemoare 등과 Fenves 등이 실시한 실험값과 비교 검토하여 본 연구의 타당성을 입증하였다.

풍절소음 저감을 위한 웨더스트립 돌출부 형상연구 (Aerodynamic acoustics of automotive weather strip protuberance)

  • 김태호;이규호;전승경;최진국;김준형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2546-2551
    • /
    • 2007
  • Weather Strip(W/S) is a rubber part to proof water, sound and dust for opening and shutting devices including vehicle doors. And it requires high dimension precision and durability to proof water, noise, vibration and etc. But ironically it itself makes some wind noise because of some protuberance with glasses. The air flow analysis of door part of vehicle makes it possible to calculate and find out the cause of wind noise. In previous analysis, we focus on the numerical air flow analysis of the automobile side part. We do 2D-C.F.D first and 3D second. Through simulations, we can calculate the amount of sound pressure level at the glass run and find out the effects of glass run to make wind noise. Finally we can improve shape of glass run to reduce wind noise although it is small amounts of sound pressure reduction compared with total vehicle noise level.

  • PDF