• Title/Summary/Keyword: 3d stress state

Search Result 162, Processing Time 0.033 seconds

A 3-D Finite Element Model For R/C Structures Based On Orthotropic Hypoelastic Constitutive Law

  • Cho, Chang-Geun;Park, Moon-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Based on the orthotropic hypoelasticity formulation, a constitutive material model of concrete taking account of triaxial stress state is presented. In this model, the ultimate strength surface of concrete in triaxial stress space is described by the Hsieh's four-parameter surface. On the other hand, the different ultimate strength surface of concrete in strain space is proposed in order to account for increasing ductility in high confinement pressure. Compressive ascending and descending behavior of concrete is considered. Concrete cracking behavior is considered as a smeared crack model, and after cracking, the tensile strain-softening behavior and the shear mechanism of cracked concrete are considered. The proposed constitutive model of concrete is compared with some results obtained from tests under the states of uniaxial, biaxial, and triaxial stresses. In triaxial compressive tests, the peak compressive stress from the predicted results agrees well with the experimental results, and ductility response under high confining pressure matches well the experimental result. The reinforcing bars embedded in concrete are considered as an isoparametric line element which could be easily incorporated into the isoparametric solid element of concrete, and the average stress - average strain relationship of the bar embedded in concrete is considered. From numerical examples for a reinforced concrete simple beam and a structural beam type member, the stress state of concrete in the vicinity of talc critical region is investigated.

  • PDF

Optimal Design of Functionally Graded Plates (경사기능재료 판의 최적설계)

  • Na, Kyung-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1061-1064
    • /
    • 2006
  • Optimal design of functionally graded plates is investigated considering stress and critical temperature. Material properties are assumed to be temperature dependent and varied continuously in the thickness direction. The effective material properties are obtained by applying linear rule of mixtures. The 3-D finite element model is adopted using an 18-node solid element to analyze more accurately the variation of material properties and temperature field in the thickness direction. For stress analysis, the tensile stress ratio and compressive stress ratio of the structure under mechanical load are investigated. In the thermo-mechanical buckling analysis, temperature at each node is obtained by solving the steady-state heat transfer problem and Newton-Raphson method is used for material nonlinear analysis. Finally, the optimal design of FGM plates is studied for stress reduction and improving thermo-mechanical buckling behavior, simultaneously.

  • PDF

Anisotropic Analysis of Tunnel in Transversely Isotropic Rock (횡등방성 암반 내 터널의 이방성 해석)

  • Choi Mi-Jin;Yang Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.391-399
    • /
    • 2005
  • In this study, stress difference between isotropic and transversely isotropic rock mass, and planar principal stresses at the periphery of the tunnel in the rock with various ratio of anisotropy were determined theoretically. Stress differences between isotropic and anisotropic calculations at crown. side walls and floor of a tunnel with assumed stress states were analyzed and compare each other by $FLAC^{2D}$, a finite differential element method. As a result, magnitude and direction of principal stresses in the case of ignoring anisotropy were different from those of anisotropic cases, whatever the stress state was. Stress difference increased as the ratio of anisotropy increased. Direction or anisotropy affected stress difference, especially in the cases of anisotropic directions of $45^{\circ}\;and\;135^{\circ}$ of counterclockwise from x direction.

Numerical simulation of elastic-plastic stress concentration in fibrous composites

  • Polatov, Askhad M.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.271-288
    • /
    • 2013
  • In the present study an elastic-plastic strain analysis is carried out for fibrous composites by using numerical modeling. Application of homogeneous transversely-isotropic model was chosen based on problem solution of a square plate with a circular hole under uniaxial tension. The results obtained in this study correspond to the solution of fiber model trial problem, as well as to analytical solution. Further, numerical algorithm and software has been developed, based on simplified theory of small elastic strains for transversely-isotropic bodies, and FEM. The influence of holes and cracks on stress state of complicated configuration transversely-isotropic bodies has been studied. Strain curves and plasticity zones that are formed in vicinity of the concentrators has been provided. Numerical values of effective mechanical parameters calculated for unidirectional composites at different ratios of fiber volume content and matrix. Content volume proportions of fibers and matrix defined for fibrous composite material that enables to behave as elastic-plastic body or as a brittle material. The influences of the fibrous structure on stress concentration in vicinity of holes on boron/aluminum D16, used as an example.

EEG Fast Beta Sub-band Power and Frontal Alpha Asymmetry under Cognitive Stress

  • Sohn, Jin-Hun;Park, Mi-Kyung;Park, Ji-Yeon;Lee, Kyung-Hwa
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.225-230
    • /
    • 2001
  • Intensity of background noise is a factor significantly affecting both subjective evaluation of experienced stress level and associated electroencephalographic (EEG) responses during mental load in noisy environments. In the study on 27 subjects we analyzed the influence of the background white noise (WN) intensity on psychophysiological responses during a word recognition test. Electrocortical activity were recorded during baseline resting state and 40 s long performance on 3 similar Korean word recognition tests with different intensities of background WN (55, 70 and 85 dB).. An important finding in terms of physiological reactivity was similarity of all physiological response profiles between 55 and 70dB WN, i.e., none of physiological variables differentiated the two conditions, while 85dB WN resulted in a significantly different profile of reactions (higher fast beta power in EEG spectra). This condition was characterized by highest subjective rating of experienced stress, had more fast beta activity and had tendency of right hemisphere dominance, emphasizing the role of brain lateralization in negative affect control.

Effect of cohesion of infill materials on the performance of geocell-reinforced cohesive soil subgrade

  • Yang Zhao;Zheng Lu;Jie Liu;Lei Ye;Weizhang Xu;Hailin Yao
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.301-315
    • /
    • 2023
  • Adopting cohesive soil as geocell-pocket infill materials is not fully accepted by researchers in the field of road engineering. The cohesion that may inhibit the lateral limitation of geocells is a common vital idea that exists within every researcher. However, the influence of infill materials' cohesion on geocell-reinforced performance is still not thoroughly determined. The mechanism behind this still needs to be studied in depth. This study initially discussed the relationship between subgrade bearing capacity, geocells' contribution to reinforced performance, and infill materials' cohesion (IMC). A law was proposed that adopting the soil with high cohesion as infill materials benefited the subgrade bearing capacity, but this was attributed to the superior mechanical properties of infill materials rather than geocells' contribution. Moreover, the vertical and lateral deformation of subgrade, coupling shear stress and confining stress of geocells, and deformation of geocells were deeply studied to analyze the mechanism that high cohesion can inhibit the geocells' contribution. The results indicate that the infill materials with high cohesion result in the total displacement of the subgrade toward to deeper depth, not the lateral direction. These responses decrease the vertical coupling shear stress, confining stress, and normal displacement of geocell walls, which weaken the lateral limitation of geocells.

TWO DIMENSIONAL STUDY OF HYDRAULIC FRACTURING CRITERIA IN COHESIVE SOILS

  • 유택영사
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03b
    • /
    • pp.3-12
    • /
    • 1994
  • Based on the shear failure mechanism, hydraulic fracturing criteria are extended to three dimensional stress state. According to the situation of the directions of borehole and major principal stress axes, three equations can be derived for three dimensional hydraulic fracturing problems. By comparing these equations, a single criterion is selected for hydraulic fracturing pressure in cohesive soils. The criterion is a function of maximum principal stress, minimum principal stress and soil parameters in UU conditions. The equation indicates that with any increase in maximim principal stress, hydraulic fracturing pressure decreases. In order to prove the integrity of the criteria, laboratory tests are performed on compacted cubical specimens using true a triaxial apparatus. The shape and direction of fractures are determined by injecting colored water after fracture initiation. It is found that the direction of fractures are perpendicular to the o1 plane.

  • PDF

Effect of 2D Forest Video Viewing and Virtual Reality Forest Video Viewing on Stress Reduction in Adults (2D 숲동영상 및 Virtual Reality 숲동영상 시청이 성인의 스트레스 감소에 미치는 영향)

  • Hong, Sungjun;Joung, Dawou;Lee, Jeongdo;Kim, Da-young;Kim, Soojin;Park, Bum-Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.440-453
    • /
    • 2019
  • This study was carried out to investigate the effect of watching a two-dimensional (2D) forest video and a virtual reality (VR) forest video on stress reduction in adults. Experiments were conducted in an artificial climate room, and 40 subjects participated. After inducing stress in the subjects, subjects watched a 2D gray video, 2D forest video, or VR forest video for 5 mins. The autonomic nervous system activity was evaluated continuously in terms of measured heart rate variability during the experiment. After each experiment, the subject's psychological state was evaluated using a questionnaire. The 2D forest video decreased the viewer's stress index, increased HF, and reduced heart rate compared with the 2D gray video. The VR forest video had a greater stress index reduction effect, LF/HF increase effect, and heart rate reduction effect than the 2D gray video. Psychological measurements showed that subjects felt more comfortable, natural, and calm when watching the 2D gray video, 2D forest video or VR forest video. We also found that the 2D forest video and VR forest video increased positive emotions and reduced negative emotions compared to the 2D gray video. Based on these results, it can be concluded that watching the 2D forest and VR forest videos reduces the stress index and heart rate compared with watching the 2D gray video. Thus, it is considered that the 2D forest video increases the activity of the parasympathetic nervous system, and the VR forest video increases the activity of the sympathetic nervous system. The increased activity of the sympathetic nervous system upon watching the VR forest video is judged to be positive sympathetic nerve activity, such as novelty and curiosity, and not negative sympathetic activity, such as stress and tension. The results of this study are expected to be the basis for examining the visual effects of forest healing, with hope that the utilization of VR, the technology of the fourth industrial revolution in the forestry field, will broaden.

A Case Study on Engineering Failure Analysis of Link Chain

  • Kim, Tae-Gu;Lee, Seong-Beom;Lee, Hong-Chul
    • Safety and Health at Work
    • /
    • v.1 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Objectives: The objective of this study was to investigate the effect of chain installation condition on stress distribution that could eventually cause disastrous failure from sudden deformation and geometric rupture. Methods: Fractographic method used for the failed chain indicates that over-stress was considered as the root cause of failure. 3D modeling and finite element analysis for the chain, used in a crane hook, were performed with a three-dimensional interactive application program, CATIA, commercial finite element analysis and computational fluid dynamic software, ANSYS. Results: The results showed that the state of stress was changed depending on the initial position of the chain that was installed in the hook. Especially, the magnitude of the stress was strongly affected by the bending forces, which are 2.5 times greater (under the simulation condition currently investigated) than that from the plain tensile load. Also, it was noted that the change of load state is strongly related to the failure of parts. The chain can hold an ultimate load of about 8 tons with only the tensile load acting on it. Conclusion: The conclusions of this research clearly showed that a reduction of the loss from similar incidents can be achieved when an operator properly handles the installation of the chain.

Evaluation of Antioxidative Effects of Lactobacillus plantarum with Fuzzy Synthetic Models

  • Zhao, Jichun;Tian, Fengwei;Yan, Shuang;Zhai, Qixiao;Zhang, Hao;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1052-1060
    • /
    • 2018
  • Numerous studies suggest that the effects of lactic acid bacteria (LAB) on oxidative stress in vivo are correlated with their antioxidative activities in vitro; however, the relationship is still unclear and contradictory. The antioxidative activities of 27 Lactobacillus plantarum strains isolated from fermented foods were determined in terms of 2,2-diphenyl-1-picrylhydrazyl, hydroxyl radical, and superoxide radical scavenging abilities, reducing activity, resistance to hydrogen peroxide, and ferrous chelating ability in vitro. Two fuzzy synthetic evaluation models, one with an analytic hierarchy process and one using entropy weight, were then used to evaluate the overall antioxidative abilities of these L. plantarum strains. Although there was some difference between the two models, the highest scoring strain (CCFM10), the middle scoring strain (CCFM242), and the lowest scoring strain (RS15-3) were obtained with both models. Examination of the antioxidative abilities of these three strains in $\text\tiny{D}$-galactose-induced oxidative stress mice demonstrated that their overall antioxidative abilities in vitro could reveal the abilities to alleviate oxidative stress in vivo. The current study suggests that assessment of overall antioxidative abilities with fuzzy synthetic models can guide the evaluation of probiotic antioxidants. It might be a more quick and effective method to evaluate the overall antioxidative abilities of LAB.