• Title/Summary/Keyword: 3d depth map

Search Result 276, Processing Time 0.033 seconds

Wider Depth Dynamic Range Using Occupancy Map Correction for Immersive Video Coding (몰입형 비디오 부호화를 위한 점유맵 보정을 사용한 깊이의 동적 범위 확장)

  • Lim, Sung-Gyun;Hwang, Hyeon-Jong;Oh, Kwan-Jung;Jeong, Jun Young;Lee, Gwangsoon;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1213-1215
    • /
    • 2022
  • 몰입형 비디오 부호화를 위한 MIV(MPEG Immersive Video) 표준은 제한된 3D 공간의 다양한 위치의 뷰(view)들을 효율적으로 압축하여 사용자에게 임의의 위치 및 방향에 대한 6 자유도(6DoF)의 몰입감을 제공한다. MIV 의 참조 소프트웨어인 TMIV(Test Model for Immersive Video)에서는 복수의 뷰 간 중복되는 영역을 제거하여 전송할 화소수를 줄이기 때문에 복호화기에서 렌더링(rendering)을 위해서 각 화소의 점유(occupancy) 정보도 전송되어야 한다. TMIV 는 점유맵을 깊이(depth) 아틀라스(atlas)에 포함하여 압축 전송하고, 부호화 오류로 인한 점유 정보 손실을 방지하기 위해 깊이값 표현을 위한 동적 범위의 일부를 보호대역(guard band)으로 할당한다. 이 보호대역을 줄여서 더 넓은 깊이값의 동적 범위를 사용하면 렌더링 화질을 개선시킬 수 있다. 따라서, 본 논문에서는 현재 TMIV 의 점유 정보 오류 분석을 바탕으로 이를 보정하는 기법을 제시하고, 깊이 동적 범위 확장에 따른 부호화 성능을 분석한다. 제안기법은 기존의 TMIV 와 비교하여 평균 1.3%의 BD-rate 성능 향상을 보여준다.

  • PDF

Fabrication of Face Molds and Silicone Masks using 3D Printing (3D 프린팅을 이용한 얼굴 몰드 및 실리콘 마스크 제작)

  • Choi, Yea-Jun;Shin, Il-Kyu;Choi, Kanghyun;Choi, Soo-Mi
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.516-523
    • /
    • 2016
  • For old-age makeups, makeup artists first make a mold cast of an actor's face using plaster and then sculpt wrinkles in clay on the plaster mold. After finishing the clay sculpture, its negative plaster mold is fabricated and silicone skin patches are finally made for application to the actor's face. This process takes a few days and is tedious for actors and makeup artists. With recent advances in 3D printing and scanning technology, it is becoming easier to scan and fabricate 3D faces. This paper presents a new pipeline composed of facial scanning, interactive wrinkle modeling, and mold printing stages to easily and efficiently fabricate silicone masks for old-age makeups without the use of plaster and clay. An intuitive sketch interface based on a normal map is proposed for the creation of wrinkles in real time, even with a high-resolution face model. Then the geometry of the final wrinkles is reconstructed using a depth map and the negative mold of the wrinkled face is printed. We also show that the presented pipeline can fabricate a silicone mask more conveniently than the traditional one that consists of pouring silicone into the prepared negative mold and then overlapping the mold with the original positive one.

Segmentation of Target Objects Based on Feature Clustering in Stereoscopic Images (입체영상에서 특징의 군집화를 통한 대상객체 분할)

  • Jang, Seok-Woo;Choi, Hyun-Jun;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4807-4813
    • /
    • 2012
  • Since the existing methods of segmenting target objects from various images mainly use 2-dimensional features, they have several constraints due to the shortage of 3-dimensional information. In this paper, we therefore propose a new method of accurately segmenting target objects from three dimensional stereoscopic images using 2D and 3D feature clustering. The suggested method first estimates depth features from stereo images by using a stereo matching technique, which represent the distance between a camera and an object from left and right images. It then eliminates background areas and detects foreground areas, namely, target objects by effectively clustering depth and color features. To verify the performance of the proposed method, we have applied our approach to various stereoscopic images and found that it can accurately detect target objects compared to other existing 2-dimensional methods.

Design of Behavioral Classification Model Based on Skeleton Joints (Skeleton Joints 기반 행동 분류 모델 설계)

  • Cho, Jae-hyeon;Moon, Nam-me
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.1101-1104
    • /
    • 2019
  • 키넥트는 RGBD 카메라로 인체의 뼈대와 관절을 3D 공간에서 스켈레톤 데이터수집을 가능하게 해주었다. 스켈레톤 데이터를 활용한 행동 분류는 RNN, CNN 등 다양한 인공 신경망으로 접근하고 있다. 본 연구는 키넥트를 이용해서 Skeleton Joints를 수집하고, DNN 기반 스켈레톤 모델링 학습으로 행동을 분류한다. Skeleton Joints Processing 과정은 키넥트의 Depth Map 기반의 Skeleton Tracker로 25가지 Skeleton Joints 좌표를 얻고, 학습을 위한 전처리 과정으로 각 좌표를 상대좌표로 변경하고 데이터 수를 제한하며, Joint가 트래킹 되지 않은 부분에 대한 예외 처리를 수행한다. 스켈레톤 모델링 학습 과정에선 3계층의 DNN 신경망을 구축하고, softmax_cross_entropy 함수로 Skeleton Joints를 집는 모션, 내려놓는 모션, 팔짱 낀 모션, 얼굴을 가까이 가져가는 모션 해서 4가지 행동으로 분류한다.

Noise reduction method using a variance map of the phase differences in digital holographic microscopy

  • Hyun-Woo Kim;Myungjin Cho;Min-Chul Lee
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.131-137
    • /
    • 2023
  • The phase reconstruction process in digital holographic microscopy involves a trade-off between the phase error and the high-spatial-frequency components. In this reconstruction process, if the narrow region of the sideband is windowed in the Fourier domain, the phase error from the DC component will be reduced, but the high-spatial-frequency components will be lost. However, if the wide region is windowed, the 3D profile will include the high-spatial-frequency components, but the phase error will increase. To solve this trade-off, we propose the high-variance pixel averaging method, which uses the variance map of the reconstructed depth profiles of the windowed sidebands of different sizes in the Fourier domain to classify the phase error and the high-spatial-frequency components. Our proposed method calculates the average of the high-variance pixels because they include the noise from the DC component. In addition, for the nonaveraged pixels, the reconstructed phase data created by the spatial frequency components of the widest window are used to include the high-spatialfrequency components. We explain the mathematical algorithm of our proposed method and compare it with conventional methods to verify its advantages.

Estimation of Disparity for Depth Extraction in Monochrome CMOS Image Sensors with Offset Pixel Apertures (깊이 정보 추출을 위한 오프셋 화소 조리개가 적용된 단색 CMOS 이미지 센서의 디스패리티 추정)

  • Lee, Jimin;Kim, Sang-Hwan;Kwen, Hyeunwoo;Chang, Seunghyuk;Park, JongHo;Lee, Sang-Jin;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.123-127
    • /
    • 2020
  • In this paper, the estimation of the disparity for depth extraction in monochrome complementary metal-oxide-semiconductor (CMOS) image sensors with offset pixel apertures is presented. To obtain the depth information, the disparity information between two different channel data of the offset pixel apertures is required. The disparity is caused by the difference in the response angle between the left- and right-offset pixel aperture images. A depth map is implemented by the generated disparity. Therefore, the disparity is the most important factor for realizing 3D images from the designed CMOS image sensor with offset pixel apertures. The disparity is influenced by the pixel height and offset value of the offset pixel aperture. To confirm this correlation, the offset value is set to maximum within the pixel area, and the disparity values corresponding to the difference in the heights are calculated and compared. The disparity is derived using the camera-lens formula. Two monochrome CMOS image sensors with offset pixel apertures are used in the disparity estimation.

Boundary Noise Removal and Hole Filling Algorithm for Virtual Viewpoint Image Generation (가상시점 영상 생성을 위한 경계 잡음 제거와 홀 채움 기법)

  • Ko, Min-Soo;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.679-688
    • /
    • 2012
  • In this paper, performance improved hole-filling algorithm including boundary noise removing pre-process which can be used for an arbitrary view synthesis with given two views is proposed. Boundary noise usually occurs because of the boundary mismatch between the reference image and depth map and common-hole is defined as the occluded region. These boundary noise and common-hole created while synthesizing a virtual view result in some defects and they are usually very difficult to be completely recovered by using only given two images as references. The spiral weighted average algorithm gives a clear boundary of each object by using depth information and the gradient searching algorithm is able to preserve details. In this paper, we combine these two algorithms by using a weighting factor ${\alpha}$ to reflect the strong point of each algorithm effectively in the virtual view synthesis process. The experimental results show that the proposed algorithm performs much better than conventional algorithms.

Recognition method using stereo images-based 3D information for improvement of face recognition (얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식)

  • Park Chang-Han;Paik Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.30-38
    • /
    • 2006
  • In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.

Utilization Plan Research of High Resolution Images for Efficient River Zone Management (효율적 하천구역관리를 위한 고해상 영상의 활용 방안 연구)

  • Park, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Yun-Won;Jo, Myung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • The river management in Korea had been focused on line based 2D spatial data for the developing river management application system. In this study, the polygon based 3D spatial data such as aerial photos and satellite images were selected and used through comparing their resolution levels for the river environment management. In addition, 1m detailed DEM (Digital Elevation Model) was constructed to implement the real topography information around river so that the damage area scale could be extracted for flood disaster. Also, the social environment thematic maps such as a cadastral map or land cover map could be used to verify the real damage area scale by overlay analysis on aerial photos or satellite images. The construction of these spatial data makes possible to present the real surface information and extract quantitative analysis to support the scientific decision making for establishing the river management policy. For the further study, the lidar surveying data will be considered as the very useful data by offering the real height information of riverbed as the depth of river so that flood simulation can give more reality.

Weighted cost aggregation approach for depth extraction of stereo images (영상의 깊이정보 추출을 위한 weighted cost aggregation 기반의 스테레오 정합 기법)

  • Yoon, Hee-Joo;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1194-1199
    • /
    • 2009
  • Stereo vision system is useful method for inferring 3D depth information from two or more images. So it has been the focus of attention in this field for a long time. Stereo matching is the process of finding correspondence points in two or more images. A central problem in a stereo matching is that it is difficult to satisfy both the computation time problem and accuracy at the same time. To resolve this problem, we proposed a new stereo matching technique using weighted cost aggregation. To begin with, we extract the weight in given stereo images based on features. We compute the costs of the pixels in a given window using correlation of weighted color and brightness information. Then, we match pixels in a given window between the reference and target images of a stereo pair. To demonstrate the effectiveness of the algorithm, we provide experimental data from several synthetic and real scenes. The experimental results show the improved accuracy of the proposed method.