DOI QR코드

DOI QR Code

Estimation of Disparity for Depth Extraction in Monochrome CMOS Image Sensors with Offset Pixel Apertures

깊이 정보 추출을 위한 오프셋 화소 조리개가 적용된 단색 CMOS 이미지 센서의 디스패리티 추정

  • Lee, Jimin (School of Electrical Engineering, Kyungpook National Unversity) ;
  • Kim, Sang-Hwan (School of Electrical Engineering, Kyungpook National Unversity) ;
  • Kwen, Hyeunwoo (School of Electrical Engineering, Kyungpook National Unversity) ;
  • Chang, Seunghyuk (Center for Integrated Smart Sensors) ;
  • Park, JongHo (Center for Integrated Smart Sensors) ;
  • Lee, Sang-Jin (Center for Integrated Smart Sensors) ;
  • Shin, Jang-Kyoo (School of Electrical Engineering, Kyungpook National Unversity)
  • 이지민 (경북대학교 전자공학부) ;
  • 김상환 (경북대학교 전자공학부) ;
  • 권현우 (경북대학교 전자공학부) ;
  • 장승혁 (스마트 IT 융합시스템 연구단) ;
  • 박종호 (스마트 IT 융합시스템 연구단) ;
  • 이상진 (스마트 IT 융합시스템 연구단) ;
  • 신장규 (경북대학교 전자공학부)
  • Received : 2020.03.20
  • Accepted : 2020.03.31
  • Published : 2020.03.31

Abstract

In this paper, the estimation of the disparity for depth extraction in monochrome complementary metal-oxide-semiconductor (CMOS) image sensors with offset pixel apertures is presented. To obtain the depth information, the disparity information between two different channel data of the offset pixel apertures is required. The disparity is caused by the difference in the response angle between the left- and right-offset pixel aperture images. A depth map is implemented by the generated disparity. Therefore, the disparity is the most important factor for realizing 3D images from the designed CMOS image sensor with offset pixel apertures. The disparity is influenced by the pixel height and offset value of the offset pixel aperture. To confirm this correlation, the offset value is set to maximum within the pixel area, and the disparity values corresponding to the difference in the heights are calculated and compared. The disparity is derived using the camera-lens formula. Two monochrome CMOS image sensors with offset pixel apertures are used in the disparity estimation.

Keywords

References

  1. M. Mase, S. Kawahito, M. Sasaki, Y. Wakamori, and M. Furuta, "A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters", IEEE J. Solid-State Circuits, Vol. 40, No. 12, pp. 2787-2795, 2005. https://doi.org/10.1109/JSSC.2005.858477
  2. R. Reshef, T. Leitner, S. Alfassi, E. Sarig, N. Golan, O. Berman, A. Fenigstein, H. Wolf, G. Hevel, S. Vilan, and A. Lahav, "Large-Format Medical X-Ray CMOS Image Sensor for High Resolution High Frame Rate Applications", Int. Image Sens. Work., No. 972, pp. 2-5, 2009.
  3. N. Akahane and S. Sugawa, "Wide Dynamic Range CMOS Image Sensors for High Quality Digital Camera, Security, Automotive and Medical Applications", Proc. IEEE Sens., pp. 396-399, 2006.
  4. T. Yu, G. Fu, Y. Qiu, and Y. Wang, "Noise Power Spectrum Estimation of Column Fixed Pattern Noise in CMOS Image Sensors Based on AR Model", 2019 Progn. Syst. Health Manag. Conf. PHAI-Qingdao 2019, No. 1707, pp. 1-5, 2019.
  5. A. R. Ximenes, P. Padmanabhan, M. J. Lee, Y. Yamashita, D. N. Yaung, and E. Charbon, "A $256(\times)256$ 45/65nm 3D-stacked SPAD-based direct TOF image sensor for LiDAR applications with optical polar modulation for up to 18.6dB interference suppression", Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf., Vol. 61, pp. 96-98, 2018.
  6. Y. Shirakawa, K. Yasutomi, K. Kagawa, S. Aoyama, and S. Kawahito, "An 8-tap CMOS lock-in pixel image sensor for short-pulse time-of-flight measurements", Sensors, Vol. 20, No. 4, pp. 1040(1)-1040(16), 2020. https://doi.org/10.3390/s20041040
  7. S. Lee, K. Yasutomi, M. Morita, H. Kawanishi, and S. Kawahito, "A time-of-flight range sensor using four-tap lock-in pixels with high near infrared sensitivity for lidar applications", Sensors, Vol. 20, No. 1, pp. 116(1)-116(17), 2020. https://doi.org/10.3390/s20041161
  8. M. El-Khamy, X. Du, H. Ren, and J. Lee, "Multi-Task Learning of Depth from Tele and Wide Stereo Image Pairs", Proc. Int. Conf. Image Process. ICIP, Vol. 2019-September, pp. 4300-4304, 2019.
  9. J. Lee, B.-S. Choi, S.-H. Kim, J. Lee, J. Lee, S. Chang, J.H. Park, S.-J. Lee, and J.-K. Shin, "Effects of Offset Pixel Aperture Width on the Performances of Monochrome CMOS Image Sensors for Depth Extraction", Sensors, Vol. 19, No. 8, pp. 1823(1)-1823(11), 2019.
  10. B.-S. Choi, M. Bae, S.-H. Kim, J. Lee, C. W. Oh, S. Chang, J. H. Park, S.-J. Lee, and J.-K. Shin, "CMOS image sensor for extracting depth information using offset pixel aperture technique", 2018 IEEE Int. Instrum. Meas. Technol. Conf., pp. 3-5, 2017.
  11. B.-S. Choi, J. Lee, S.-H. Kim, S. Chang, J. H. Park, S.-J. Lee, and J.-K. Shin, "Analysis of disparity information for depth extraction using CMOS image sensor with offset pixel aperture technique", Sensors, Vol. 19, No. 3, pp. 472(1)-472(10), 2019. https://doi.org/10.3390/s19214721