• Title/Summary/Keyword: 3T3-Ll cell

Search Result 24, Processing Time 0.018 seconds

The Effects of the Fruits of Foeniculum vulgare on Skin Barrier Function and Hyaluronic Acid Production in HaCaT Keratinocytes (HaCaT 세포에서 회향 열매의 피부장벽기능과 hyaluronic acid 생성에 미치는 영향)

  • Yu, Hak Yin;Yang, In Jun;Lincha, V.R;Park, In Sik;Lee, Dong-Ung;Shin, Heung Mook
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.880-888
    • /
    • 2015
  • Foeniculum vulgare (FV) has long been used in traditional medicine for the treatment of inflammatory diseases. In addition, it is usually known as an important medicinal and aromatic plant widely used as a carminative, digestive, lactogogue, and diuretic, and for treating respiratory and gastrointestinal disorders. The skin barrier protects against the invasion of pathogens, fends off chemical and physical assaults, and protects against extensive water loss. In this study, the effects of solvent-fractionated FV fruits on strengthening the skin barrier and maintaining moisture, as well as their antifungal activity, were investigated in human keratinocyte (HaCaT) cells. The expression of involucrin, loricrin, filaggrin, hyaluronic acid synthase, human β defensin, and cathelicidin genes and proteins was measured by reverse transcription polymerase chain reaction (RT-PCR) and western blotting. The production of hyaluronic acid was determined by enzyme-linked immunosorbent assay (ELISA). The butanol fraction increased the expression of involucrin and filaggrin. Both the ethyl acetate and the butanol fractions increased hyaluronic acid production by promoting the expression of hyaluronic acid synthase-1. Although the antimicrobial peptides were increased by FV crude extract and its fractions, the samples did not show a significant effect compared to the normal group. These results suggest that the butanol fraction of FV could be very useful in cosmetics for the treatment of dermatological diseases.

Effects of Compound K on Insulin Secretion and Carbohydrate Metabolism (Compound K의 인슐린분비 및 탄수화물 대사에 미치는 영향)

  • Choi, Yun-Suk;Han, Gi-Cheol;Han, Eun-Jung;Park, Kum-Ju;Sung, Jong-Hwan;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.31 no.2
    • /
    • pp.79-85
    • /
    • 2007
  • Compound K (CK) is a final metabolite of panaxadiol ginsenosides. Although panax ginseng is known to have anti-diabetic activity, the active ingredient is not yet fully identified. Therefore, it would be interesting to know whether and how CK has an anti-diabetic activity. First, insulin secretion-stimulating activity of CK was examined using RIN-m5F cell line and primary cultured islets. CK enhanced the insulin secretion in a concentration dependent manner. This effect, however, was almost completely abolished in the presence of diazoxide, $K^+$ channel opener, indicating that the insulin secretion-stimulating activity of CK is presumably due to blockade of ATP sensitive $K^+$ channel. In addition, effects of CK on gene expressions of hepatic enzymes (phosphoenolpyruvate carboxykinase[PEPCK], glucose-6-phos-phatase[G6Pase]) and on adipocyte differentiation in H4IIE and 3T3-Ll cells, respectively, were examined. CK suppressed the induction of PEPCK and G6Pase mRNA expressions under the dexamethasone/cAMP stimulation condition. CK also reduced the $PPAR-{\gamma}$ mRNA expression and triglyceride accumulation in a dose dependent manner as compared to the control. The present study suggests that CK deserves to examine whether it shows an anti-diabetic activity in animal and human studies.

Characterization of Acetobacter pomorum KJY8 Isolated from Korean Traditional Vinegar

  • Baek, Chang Ho;Park, Eun-Hee;Baek, Seong Yeol;Jeong, Seok-Tae;Kim, Myoung-Dong;Kwon, Joong-Ho;Jeong, Yong-Jin;Yeo, Soo-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1679-1684
    • /
    • 2014
  • Acetobacter sp. strains were isolated from traditional vinegar collected in Daegu city and Gyeongbuk province. The strain KJY8 showing a high acetic acid productivity was isolated and characterized by phenotypic, chemotaxonomic, and phylogenetic inference based on 16S rRNA sequence analysis. The chemotaxonomic and phylogenetic analyses revealed the isolate to be a strain of Acetobacter pomorum. The isolate showed a G+C content of 60.8 mol%. It contained $\small{LL}$-diaminopimelic acid ($\small{LL}$-$A_2pm$) as the cell wall amino acid and ubiquinone $Q_9$ (H6) as the major quinone. The predominant cellular fatty acids were $C_{18:1}w9c$, w12t, and w7c. Strain KJY8 grew rapidly on glucose-yeast extract (GYC) agar and formed pale white colonies with smooth to rough surfaces. The optimum cultivation conditions for acetic acid production by the KJY8 strain were $20^{\circ}C$ and pH 3.0, with an initial ethanol concentration of 9% (w/v) to produce an acetic acid concentration of 8% (w/v).

The Effect of Treponema denticola immunoinhibitory protein on cytokine expression in T cells (Treponema denticola 면역억제 단백질이 T 세포의 cytokine 발현에 미치는 영향)

  • Lee Sang-Yup;Shon Won-Jun;Lee WooCheol;Baek Seung-Ho;Bae Kwang-Shik;Lim SungSam
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.5
    • /
    • pp.479-484
    • /
    • 2004
  • Immunoinhibitory protein extracted from sonicated Treponema denticola have been shown to suppress cell cycle progression of human lymphocytes. To study in detail about the effect of this microorganism on the function of lymphocytes. we investigated the levels of Interleukin-2 (IL-2) and Interleukin-4 (IL-4) production by T lymphocytes before and after the addition of $12.5{\;}\mu\textrm{g}/ml$ T. denticola sonicated extracts. In this study. levels of IL-2 and IL-4 produced from T cells pretreated with sonicated extracts were evaluated by using the quantitative sandwich enzyme immunoassay technique. In response to phytohemagglutinin (PHA) stimulation. T cell produced increased levels of IL-2 and IL-4. However. the expressions of both cytokines were significantly inhibited when PHA activated-T cells were pre-exposed to sonicated T. denticola extracts (p < 0.05). These findings suggest that the T. denticola sonicated extracts induced-immunosuppression in Th1 and Th2 cell functions could be a part of the pathogenic mechanism of the endodontic failure associated with this microorganism.