• 제목/요약/키워드: 3T3-L1 adipocyte differentiation

검색결과 272건 처리시간 0.024초

Inhibitory Effects of Marine Algae Extract on Adipocyte Differentiation and Pancreatic Lipase Activity

  • Kim, Eun-Sil;Lee, Kyoung-Jin;Oh, Kyoung-Hee;Ahn, Jong-Hoon;Kim, Seon-Beom;Liu, Qing;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • 제18권3호
    • /
    • pp.153-157
    • /
    • 2012
  • Obesity, which is characterized by excessive fat accumulation in adipose tissues, occurs by fat absorption by lipase and sequential fat accumulation in adipocyte through adipocyte differentiation. Thus, inhibition of pancreatic lipase activity and adipocyte differentiation would be crucial for the prevention and progression of obesity. In the present study, we attempted to evaluate anti-adipogenic activity of several algae extracts employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. The effects on pancreatic lipase activity in vitro were also evaluated. Total methanolic extracts of Cladophora wrightiana and Costaria costata showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Related to pancreatic lipase, C. wrightiana and Padina arborescens showed significant inhibition. Further fractionation of C. wrightiana, which showed the most potent activity, suggested that $CHCl_3$ and n-BuOH fraction are responsible for adipocyte differentiation inhibition, whereas n-BuOH and $H_2O$ fraction for pancreatic lipase inhibition. Our study also demonstrated that n-BuOH fraction was effective both in early and middle stage of differentiation whereas $CHCl_3$ fraction was effective only in early stage of differentiation. Taken together, algae might be new candidates in the development of obesity treatment.

Effects of Wax Gourd Extracts on Adipocyte Differentiation and Uncoupling Protein Genes(Ucps) Expression in 3T3-Ll Preadipocytes

  • Kang, Keun-Jee;Kwon, So-Young
    • Nutritional Sciences
    • /
    • 제6권3호
    • /
    • pp.148-154
    • /
    • 2003
  • Although various raw plant materials have been demonstrated to exert anti-obesity effects to a greater or lesser extent in both humans and animals when they are used to supplement the diet, it has not been shown extensively that they influence adipocyte cell differentiation involving lipid metabolic gene expressions. Using a well-established 3T3-L1 preadipocyte differentiation system, we decided to look into molecular and cellular event occurring during adipocyte differentiation when raw plant materials aye included in the process, in an effort to demonstrate the potential use of a screening system to define the functions of traditionally well-known materials. To these ends, the effects of ethanol (EtOH) or EtOH/distilled water (DW) extracts of Wax Gourd were examined using cytochemical and molecular analyses to determine whether components of the extracts modulate adipocyte differentiation of 3T3-Ll preadipocytes in vitro. The cytochemical results demonstrated that EtOH or EtOH/DW extracts did not affect lipid accumulation and cell proliferation, although the degree of lipid accumulation was influenced slightly depending on the extract. EtOH extract was highly effective in apoptotic induction during differentiation of 3T3-Ll preadipocytes (p<0.05). Reverse transcription-polymerase chain reaction (RT-PCR) analysis of lipoprotein lipase (LPL), Uncoupling protein (Ucp) 2, 3 and 4 also showed that while LPL expression was not influenced, Ucp2, 3 and 4 were up regulated in the EtOH extract-treated group and down regulated in the EtOH/DW extract-treated group. These changes in gene expressions suggest that the components in different fractions of Wax Gourd extracts may modulate lipid metabolism by either direct or indirect action. Taking these results together, it was concluded that molecular and cellular analyses of adipocyte differentiation involving lipid metabolic genes should facilitate understanding of cellular events occurring during adipocyte differentiation. Furthermore, the experimental scheme and analytical methods used in this study should provide a screening system for the functional study of raw plant materials in obesity research.

Differential Action of trans-10, cis-12 Conjugated Linoleic Acid on Adipocyte Differentiation of Ovine and 3T3-L1 Preadipocytes

  • Iga, T.;Satoh, T.;Yamamoto, S.;Fukui, K.;Song, S.H.;Choi, K.C.;Roh, S.G.;Sasaki, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권11호
    • /
    • pp.1566-1573
    • /
    • 2009
  • Trans-10, cis-12 conjugated linoleic acid (CLA) has been reported to inhibit the adipocyte differentiation of preadipocytes in non-ruminant animals (mice, rat, and human). However, the effects of trans-10, cis-12 CLA have not been clear in ruminants. The objective of this study was to investigate the effects of trans-10, cis-12 CLA on adipocyte differentiation of ovine preadipocytes. Differentiation of these preadipocytes was facilitated by treatment with trans-10, cis-12 CLA. Trans-10, cis-12 CLA increased the number and size of oil red O-stainable lipid drops as well as the levels of GPDH activity. PPAR-$\gamma{2}$ and adipophilin mRNA, adipogenic marker genes, were increased by treatment with trans-10, cis-12 CLA. This result was different from that observed with 3T3-L1 preadipocytes, a clonal cell line derived from rodents. Furthermore, trans-10, cis-12 CLA alone induced the adipocyte differentiation of ovine preadipocytes in differentiation-induction medium without troglitazone. These results suggest that CLA is an inducer and regulator in adipocyte differentiation of ovine preadipocytes, with species differences between ovine and rodent preadipocytes.

Soluble extract of soybean fermented with Aspergillus oryzae GB107 inhibits fat accumulation in cultured 3T3-L1 adipocytes

  • So, Kyoung-Ha;Suzuki, Yasuki;Yonekura, Shinichi;Suzuki, Yutaka;Lee, Chan Ho;Kim, Sung Woo;Katoh, Kazuo;Roh, Sang-Gun
    • Nutrition Research and Practice
    • /
    • 제9권4호
    • /
    • pp.439-444
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: This study was conducted to investigate the effects of fermented soybean (FS) extract on adipocyte differentiation and fat accumulation using cultured 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with FS and nonfermented soybean (NFS) extract during differentiation for 10 days in vitro. Oil red O staining was performed and glycerol-3-phosphate dehydrogenase (GPDH) activity was measured for analysis of fat accumulation. Expressions of adipogenic genes were measured. RESULTS: Soluble extract of soybean fermented with Aspergillus oryzae GB107 contained higher levels of low-molecular-weight protein than conventional soybean protein did. FS extract ($50{\mu}g/ml$) inhibited adipocyte differentiation and fat accumulation during differentiation of 3T3-L1 preadipocytes for 10 days in vitro. Significantly lower GPDH activity was observed in differentiated adipocytes treated with the FS extract than those treated with NFS extract. Treatment with FS extract resulted in decreased expression levels of leptin, adiponectin, and adipogenin genes, which are associated with adipogenesis. CONCLUSIONS: This report is the first to demonstrate that the water-soluble extract from FS inhibits fat accumulation and lipid storage in 3T3-L1 adipocytes. Thus, the soybean extract fermented with A. oryzae GB107 could be used to control lipid accumulation in adipocytes.

미역 에탄올 추출물이 지방세포 형성과정에 미치는 영향 (Anti-adipogenic Effect of Undaria pinnatifida Extracts by Ethanol in 3T3-L1 Adipocytes)

  • 김혜진;강창한;김성구
    • 생명과학회지
    • /
    • 제22권8호
    • /
    • pp.1052-1056
    • /
    • 2012
  • 미역(Undaria pinnatifada)은 낮은 칼로리 및 요오드의 원료로써 천연체중조절식품으로 알려져 있다. 미역이 체중조절식품으로 알려져 있음에도 불구하고, 지방세포 분화 및 지방축적에 관한 저해 기작은 연구가 미비하다. 본 연구에서는 3T3-L1에서 지방세포로 분화가 일어나는 단계에서 미역에탄올추출물의 효과 및 기작을 확인하였다. 미역에탄올추출물의 독성과 지방축적저해효과는 MTT assay, Oil red O staining, RT-PCR과 western blot으로 분석하였다. 미역에탄올추출물은 50 ${\mu}g/ml$의 농도에서 독성을 띄지 않았다. 3T3-L1의 분화 및 지방세포에서 triglyceride축적과정동안 50 ${\mu}g/ml$의 미역에탄올추출물을 처리하였으며, 미역에탄올추출물은 지방세포에서 triglyceride의 축적을 40% 감소시켰다. 지방세포 특이적 단백질인 Peroxisome proliferator activated receptor ${\gamma}$ ($PPAR{\gamma}$), leptin과 Hormone sensitive lipase (HSL)의 발현은 RT-PCR과 western blot으로 확인하였다. $PPAR{\gamma}$의 과발현은 지방세포의 분화를 촉진시킨다. 또한 지방세포 크기의 증가와 세포 내 triglyceride의 함량에 따라 leptin은 세포 외로 분비된다. 그러므로 $PPAR{\gamma}$와 leptin은 비만의 지표로 사용된다. 첨가한 미역에탄올추출물의 농도가 높아질수록 $PPAR{\gamma}$와 leptin의 발현이 억제되었다. 이상의 결과를 통하여, 미역의 에탄올 추출물은 지방전구세포의 분화를 억제시키며, 지방세포 내 triglyceride의 축적을 저해하는 것으로 판단된다.

Roles of Protein Histidine Phosphatase 1 (PHPT1) in Brown Adipocyte Differentiation

  • Kang, Joo Ae;Kang, Hyun Sup;Bae, Kwang-Hee;Lee, Sang Chul;Oh, Kyoung-Jin;Kim, Won Kon
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.306-312
    • /
    • 2020
  • Despite the importance of brown adipocytes as a therapeutic target for the prevention and treatment of obesity, the molecular mechanism underlying brown adipocyte differentiation is not fully understood. In particular, the role of post-translational modifications in brown adipocyte differentiation has not been extensively studied. Histidine phosphorylation is increasingly recognized an important process for protein post-translational modifications. In this study, we show that histidine phosphorylation patterns change during brown adipocyte differentiation. In addition, the expression level of protein histidine phosphatase 1 (PHPT1), a major mammalian phosphohistidine phosphatase, is reduced rapidly at the early phase of differentiation and recovers at the later phase. During white adipocyte differentiation of 3T3-L1 preadipocytes, however, the expression level of PHPT1 do not significantly change. Knockdown of PHPT1 promotes brown adipocyte differentiation, whereas ectopic expression of PHPT1 suppresses brown adipocyte differentiation. These results collectively suggest that histidine phosphorylation is closely linked to brown adipocyte differentiation and could be a therapeutic target for obesity and related metabolic diseases.

3T3-L1 세포분화 중 지방축적 및 ROS 생성에 대한 잔가시 모자반 추출물의 효과 (Effect of Sargassum micracanthum extract on Lipid Accumulation and Reactive Oxygen Species (ROS) Production during Differentiation of 3T3-L1 Preadipocytes)

  • 이영준;윤보라;최현선;이부용;이옥환
    • 한국식품저장유통학회지
    • /
    • 제19권3호
    • /
    • pp.455-461
    • /
    • 2012
  • 본 연구에서는 잔가시 모자반 추출물의 항비만 및 항산화 효과를 연구하기 위하여 3T3-L1 전지방세포에 분화 유도물질을 처리하여 분화 과정 중에 잔가시 모자반의 지방축적과 ROS 생성 억제 효과를 관찰하였다. 잔가시 모자반 추출물은 XTT assay에서 두 농도(10 및 100 ${\mu}g/mL$) 모두에서 세포 독성을 보이지 않았다. 지방세포 분화 중 세포 내 지방축적 및 ROS 생성량을 비교한 결과, 잔가시 모자반 추출물을 처리한 지방세포의 경우 지방축적량과 ROS 생성량 모두 유의적으로 억제되는 것으로 나타났다. 특히 잔가시 모자반 추출물을 처리함으로써 지방세포 분화와 관련된 전사인자인 $PPAR{\gamma}$$C/EBP{\alpha}$ 발현을 유의적으로 감소시켰으며, ROS의 생성과 관련이 있는 주요 효소인 NOX4의 발현 또한 유의적으로 감소하였다. 이 결과를 통해 잔가시 모자반 추출물이 3T3-L1 지방세포 내 중성지방의 축적 억제 효과와 더불어 ROS 생성 억제에 효과적으로 작용함을 확인하였다. 따라서 잔가시 모자반은 비만과 같이 대사증후군 관련 질환의 개선을 위한 천연물 기능성 소재로의 활용이 기대된다.

Proteome Analysis for 3T3-L1 Adipocyte Differentiation

  • Rahman, Atiar;Kumar, Suresh G.;Lee, Sung-Hak;Hyun, Sun-Hwang;Kim, Hyun-Ah;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권12호
    • /
    • pp.1895-1902
    • /
    • 2008
  • Adipose tissue is an important endocrine organ involved in the control of whole body energy homeostasis and insulin sensitivity. Considering the increased incidence of obesity and obesity-related disorders, including diabetes, it is important to understand thoroughly the process of adipocyte differentiation and its control. Therefore, we performed a differential proteome mapping strategy using two-dimensional gel electrophoresis combined with peptide mass fingerprinting to identify intracellular proteins that are differentially expressed during adipose conversion of 3T3-L1 pre-adipocytes in response to an adipogenic cocktail. In the current study, we identified 46 differentially expressed proteins, 6 of which have not been addressed previously in 3T3-L1 cell differentiation. Notably, we found that phosphoribosyl pyrophosphate synthetase (PRPS), a regulator of cell proliferation, was preferentially expressed in pre-adipocytes than in fully differentiated adipocytes. In conclusion, our results provide valuable information for further understanding of the adipogenic process.

진피 에탄올 추출물의 AMPK signaling pathway를 통한 3T3-L1 지방전구세포의 adipogenesis 억제에 관한 연구 (Ethanol Extracts of Citrus Peel Inhibits Adipogenesis through AMPK Signaling Pathway in 3T3-L1 Preadipocytes)

  • 조현균;한민호;홍수현;최영현;박철
    • 생명과학회지
    • /
    • 제25권3호
    • /
    • pp.285-292
    • /
    • 2015
  • 본 연구에서는 3T3-L1 지방전구세포가 지방세포로 분화되는 과정에서 진피 에탄올 추출물(ethanol extracts of citrus peel, EECP)이 유발하는 항비만 효능에 대해서 조사하였다. 3T3-L1 세포의 생존율 및 증식에 영향을 미치지 않는 농도의 EECP를 처리하였을 경우 지방세포에서 특징적으로 나타나는 lipid droplet의 형성과 triglyceride의 생성도 억제되는 것으로 나타났다. EECP가 유발하는 지방세포로의 분화억제에는 PPARγ, C/EBPα, C/EBPβ 및 SREBP-1c 등과 같은 adipogenic transcription factors의 발현억제가 관여하는 것으로 나타났으며, 그 결과로 aP2 및 Leptin과 같은 adipocyte expressed genes의 발현도 억제되는 것으로 조사되었다. 또한 EECP는 AMPK 및 ACC의 인산화를 유발하였으며, AMPK 억제제인 Compound C를 이용하여 AMPK의 활성을 억제하였을 경우 EECP에 의한 AMPK의 인산화와 adipogenic transcription factors의 억제현상이 회복되었다. 이상의 결과에서 EECP는 AMPK signaling pathway를 통하여 항비만 효능을 가진다는 것을 알 수 있었으며, 향후 비만 예방 및 억제와 관련된 기능성 소재로서의 진피의 활용 가능성을 제시한 것으로서 그 가치가 매우 높을 것으로 생각된다.

모시풀 추출물이 지방세포분화와 혈관신생에 미치는 영향 (Effect of Boehmeria nivea on Adipocyte Differentiation and Angiogenesis)

  • 정민유;김성희;최효경;박재호;황진택
    • KSBB Journal
    • /
    • 제31권3호
    • /
    • pp.145-150
    • /
    • 2016
  • Boehmeria nivea (L.) Gaud., a flowering plant, has been widely cultivated in Asian countries including Korea. It has been reported that B. nivea exhibits health beneficial effects for the prevention of inflammation, oxidative stress, and virus-related diseases. In this study, we evaluated the inhibitory effect of B. nivea on adipocyte differentiation and angiogenesis. DPPH radical scavenging activities of 70% ethanol extract of B. nivea (EBN) and water extract of B. nivea (WBN) were $90.8{\pm}1.1%$ and $20{\pm}6.9%$, respectively. EBN was also effective in the reduction of adipocyte differentiation in 3T3-L1 cells. We next examined the transcriptional activity of peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$), a pivotal target for anti-obesity. We found that treatment with rosiglitazone induced the transactivation of $PPAR-{\gamma}$. Under the same condition, $800{\mu}g/mL$ EBN reduced the transactivation of $PPAR-{\gamma}$ in rosiglitazone-induced cells. These results demonstrate that EBN-inhibited adipocyte differentiation was accompanied by $PPAR-{\gamma}$ inhibition. The study also tested whether EBN exhibits an anti-angiogenic effect by inhibiting tube formation in HUVECs. We found that EBN effectively inhibits tube formation, suggesting that EBN exhibited an anti-angiogenic effect. Taken together, B. nivea can be used as a functional food for the prevention of obesity and angiogenesis-related diseases including cancer.