• 제목/요약/키워드: 3T3-L1 adipocyte differentiation

검색결과 281건 처리시간 0.028초

Effects of quercetin on cell differentiation and adipogenesis in 3T3-L1 adipocytes

  • Hong, Seo Young;Ha, Ae Wha;Kim, Wookyoung
    • Nutrition Research and Practice
    • /
    • 제15권4호
    • /
    • pp.444-455
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Adipocytes undergo angiogenesis to receive nutrients and oxygen needed for adipocyte' growth and differentiation. No study relating quercetin with angiogenesis in adipocytes exists. Therefore, this study investigated the role of quercetin on adipogenesis in 3T3-L1 cells, acting through matrix metalloproteinases (MMPs). MATERIALS/METHODS: After proliferating preadipocytes into adipocytes, various quercetin concentrations were added to adipocytes, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to evaluate cell proliferation. Glycerol-3-phosphate dehydrogenase (GPDH) activity was investigated as an indicator of fat accumulation. The mRNA expressions of transcription factors related to adipocyte differentiation, CCAAT/enhancer-binding proteins (C/EBPs), peroxisomal proliferatoractivated receptors (PPAR)-γ, and adipocyte protein 2 (aP2), were investigated. The mRNA expressions of proteins related to angiogenesis, vascular endothelial growth factor (VEGF)-α, vascular endothelial growth factor receptor (VEGFR)-2, MMP-2, and MMP-9, were investigated. Enzyme activities and concentrations of MMP-2 and MMP-9 were also measured. RESULTS: Quercetin treatment suppressed fat accumulation and the expressions of adipocyte differentiation-related genes (C/EBPα, C/EBPβ, PPAR-γ, and aP2) in a concentration-dependent manner in 3T3-L1 cells. Quercetin treatments reduced the mRNA expressions of VEGF-α, VEGFR-2, MMP-2, and MMP-9 in 3T3-L1 cells. The activities and concentrations of MMP-2 and MMP-9 were also decreased significantly as the concentration of quercetin increased. CONCLUSIONS: The results confirm that quercetin inhibits adipose tissue differentiation and fat accumulation in 3T3-L1 cells, which could occur through inhibition of the angiogenesis process related to MMPs.

Acer okamotoanum inhibits adipocyte differentiation by the regulation of adipogenesis and lipolysis in 3T3-L1 cells

  • Ji Hyun Kim;Sanghyun Lee;Hyun Young Kim;Eun Ju Cho
    • International Journal of Molecular Medicine
    • /
    • 제45권2호
    • /
    • pp.589-596
    • /
    • 2020
  • Acer okamotoanum is reported to have various antioxidant, anti-inflammatory and beneficial immune system effects. The anti-adipocyte differentiation effects and mechanisms of the ethyl acetate (EtOAc) fraction of an A. okamotoanum extraction was investigated in 3T3-L1 adipocyte cells. Treatment with differentiation inducers increased the level of triglycerides (TGs) in 3T3-L1 adipocyte cells compared with an untreated control. However, the EtOAc fraction of A. okamotoanum significantly decreased TGs. Treatment with 1, 2.5 and 5 ㎍/ml showed weak activity, but TG production was inhibited at 10 ㎍/ml compared with the control. In addition, A. okamotoanum caused a significant downregulation of proteins related to adipogenesis, such as γ-cytidine-cytidine-adenosine-adenosine-thymidine/enhancer binding protein-α, -β and peroxisome proliferator-activated receptor-γ, compared with the untreated control. Furthermore, A. okamotoanum significantly upregulated lipolysis related protein, hormone-sensitive lipase and the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Therefore, these results indicate that A. okamotoanum suppressed adipogenesis and increased lipolysis and the activation of AMPK, suggesting a protective role in adipocyte differentiation.

Mechanism of Formononetin-induced Stimulation of Adipocyte Fatty Acid Oxidation and Preadipocyte Differentiation

  • Seok-Yeong Yu;Youngmin Choi;Young-In Kwon;Ok-Hwan Lee;Young-Cheul Kim
    • Journal of Food and Nutrition Research
    • /
    • 제9권3호
    • /
    • pp.163-169
    • /
    • 2021
  • Decreased adipocyte fatty acid oxidation (FAO) and impaired preadipocyte differentiation characterize hypertrophic expansion of adipose tissue (AT) from obese and insulin resistant humans and are recognized as potential mechanisms for obesity-mediated dyslipidemia. Supplementation of formononetin (FMN), one of the principal isoflavones extracted from red clover or Huangqi (Astragalus roots), has been shown to have beneficial effects on obesity-related hyperlipidemia, a well-established cardiovascular risk factor. However, a target tissue and underlying mechanism(s) through which FMN acts have been under-investigated. Thus, we investigated whether FMN promotes adipocyte FAO and preadipocyte differentiation using 3T3-L1 preadipocytes to provide potential mechanisms of FMN action. We further extended this to the culture of 10T1/2 mesenchymal stem cells (MSCs) as well as mouse AT explants to reflect in vivo effects of FMN. In fully differentiated 3T3-L1 adipocytes, FMN-treatment significantly increased the expression levels of FAO-related proteins such as pAMPK, pACC, and CPT1, all of which were consistently upregulated in AT explant cultures treated with 10 μM FMN. In addition, FMN significantly enhanced the degree of differentiation of both 3T3-L1 preadipocytes and 10T1/2 MSCs into adipocytes as evidenced by Oil Red O staining of cellular lipids. This observation correlated with increased expression levels of key adipogenic transcription factors (PPARγ and C/EBPα) and their down-stream target proteins (FABP4, Glut4 and adiponectin). Moreover, FMN failed to exert its stimulatory effects on preadipocyte differentiation in both cell types in the presence of a PPARγ antagonist, suggesting a PPARγ-dependent effect of FMN. Collectively, these data provide possible mechanisms of action of FMN on lipid metabolism and further support the favorable in vivo effects of FMN in diet and obesity-induced dyslipidemia.

적양파 추출물의 항비만 활성 (Anti-Obesity Effects of Red Onions Extract)

  • 송환;서지훈
    • 융합정보논문지
    • /
    • 제12권3호
    • /
    • pp.126-131
    • /
    • 2022
  • 비만은 에너지의 섭취와 소비의 불균형으로 지방조직이 비정상적으로 분화하면서 생기는 대사질환으로 알려져있다. 본 연구에서는 본 연구는 적양파 추출물 처리에 따른 Pancreatic lipase 억제, 지방세포분화 억제 활성을 확인하고자 하였다. 적양파추출물 처리에 따른 활성은 지방세포 분화 및 관련 유전자에 대한 평가는 3T3-L1 지방전구세포를 이용하고 Real-Time PCR을 통하여 확인하였다. 실험 결과, Pancreatic lipase 활성 억제 실험에서 적양파 추출물은 농도 의존적으로 lipase 활성을 억제하였다. 지방세포분화 실험을 수행한 결과, insulin, dexamethasone, 3-isobutyl-1-methylxanthine(MDI)등으로 분화 유도된 3T3-L1 세포에서 적양파 추출물은 지방전구세포의 분화를 억제하였으며 동시에 지방구 형성을 억제하는 것으로 나타났다. 또한, 지방전구세포의 분화 과정과 관련된 C/EBP-α, C/EBP-β, PPAR-γ의 발현을 억제하였다. 본 실험에서 적양파 추출물은 지방분해효소를 억제하며, 지방전구세포 분화와 관련된 유전자 발현을 억제함으로써 지방세포 분화 및 지방구형성을 억제할 수 있는 항비만 소재로의 개발 가능성이 높다고 판단된다.

Inhibitory Effect of Ethyl Acetate Extract of White Peach Pericarp on Adipogenesis of 3T3-L1 Preadipocyte Cells

  • Park, Hong-Gyu;Kim, Jin-Moon;Kim, Jung-Mogg;Chung, Won-Yoon;Yoo, Yun-Jung;Cha, Jeong-Heon
    • Food Science and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.1327-1331
    • /
    • 2008
  • In order to determine whether peach contains compounds to regulate adipocyte differentiation, extracts of flesh/pericarp of yellow/white peach were prepared in water, ethyl acetate (EtOAc), or n-butanol solvent and determined for effects on adipocyte differentiation in C3H10T1/2 or 3T3-L1 cells. Interestingly, none of peach extracts has statistically significant stimulatory effect on the adipocyte differentiation in C3H10T1/2. Furthermore, the presence of EtOAc extract of white peach pericarp (WPP) was found to inhibit lipid accumulation in 3T3-L1 cells both by microscopic examination of Oil Red O-stained lipid droplets and by spectrophotometric quantification of extracted stain, indicating a significant inhibitory effect on adipocyte differentiation. The inhibition of lipid accumulation was accompanied by a significant decrease in the expression levels of adipocyte molecular markers-peroxisome proliferator-activated receptor $\gamma$, CAAT enhancer binding protein $\alpha$, and fatty acid-binding protein. Thus, this study determined that WPP EtOAc extract contains the inhibitory compound(s) on adipogenesis.

가미이진탕(加味二陳湯) 전탕액과 발효액이 항비만(抗肥滿)효과에 미치는 연구 (The Study on Anti-obesity Effects of Gamiygin-tang Extract and Ferment)

  • 장성진;민들레;박은정
    • 대한한방소아과학회지
    • /
    • 제27권4호
    • /
    • pp.108-121
    • /
    • 2013
  • Objective This study was designed to investigate the effects of Gamiygin-tang (GY) extract (GYE) and fermented solution (GYF) on body weight, serum lipid level and adipocyte differentiation in high fat diet-fed obese mice. Materials and Methods High fat diet-fed obese mice and 3T3-L1 adipocytes mice were treated with GYE and GYF and obesity related markers were assessed. A cytotoxicity assay was carried out by MTS assay. Inhibitory effects of GYE and GYF on adipocyte differentiation were carried out by Oil Red O staining. The effects of GYE and GYF on the expression of adipocyte differentiation regulatory factors, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer binding protein alpha (CEBP-${\alpha}$) were measured by real-time reverse transcriptase-polymerase chain reaction. The effects of GYE and GYF on the expression of adipocyte differentiation regulatory factors were also determined in relation to protein production/protein levels by western blotting. The anti obesity effects of GYE and GYF were measured in high fat-diet induced obese mice. Various factors were measured from the serum of the high fat-diet mice. Results Though GYE did not show toxicity at the concentration of 1mg/ml, GYF showed toxicity at the concentration of 1mg/ml. The GYE at 0.1 and 1mg/ml inhibited the differentiation of 3T3-L1 cells, and the GYF also inhibited the differentiation of 3T3-L1 cells. The effect of GYE on adipocyte differentiation factors including PPAR-${\gamma}$ and CEBP-${\alpha}$ was investigated and compared to the corresponding concentration levels of GYF. GYE and GYF both suppressed the RNA and protein levels of adipocyte differentiation factors. In the animal test both GYE and GYF reduced weight gain. GYE and GYF reduced blood cholesterol, TG and LDL levels. GYF better reduced blood cholesterol levels. Conclusions These results demonstrate that GYE and GYF exerts anti-obesity effect in 3T3-L1 cells and obese mice induced by high-fat diet.

Chitosan Oligosaccharides Inhibit Adipogenesis in 3T3-L1 Adipocytes

  • Cho, Eun-Jae;Rahman, Atiar;Kim, Sang-Woo;Baek, Yu-Mi;Hwang, Hye-Jin;Oh, Jung-Young;Hwang, Hee-Sun;Lee, Sung-Hak;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.80-87
    • /
    • 2008
  • The 3T3-L1 cell line is a well-established and commonly used in vitro model to assess adipocyte differentiation. Over the course of several days, confluent 3T3-L1 cells can be converted to adipocytes in the presence of an adipogenic cocktail. In this study, the effects of chitosan oligosaccharides (CO) on adipocyte differentiation of 3T3-L1 cells were studied. The CO significantly decreased lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. The low molecular mass CO (1-3 kDa) were the most effective at inhibiting adipocyte differentiation. Moreover, mRNA expression levels of both CCAAT/enhancer-binding protein (C/EBP) ${\alpha}$ and peroxisome proliferator-activated receptor (PPAR) ${\gamma}$, the key adipogenic transcription factors, were markedly decreased by CO treatments. CO also significantly down regulated adipogenic marker proteins such as leptin, adiponectin, and resistin. Our results suggest a role for CO as antiobesity agents by inhibiting adipocyte differentiation mediated through the down regulated expression of adipogenic transcription factors and other specific genes.

Roots Extract of Adenophora triphylla var. japonica Inhibits Adipogenesis in 3T3-L1 Cells through the Downregulation of IRS1

  • Kim, Hae Lim;Lee, Hae Jin;Choi, Bong-Keun;Park, Sung-Bum;Woo, Sung Min;Lee, Dong-Ryung
    • 동의생리병리학회지
    • /
    • 제34권3호
    • /
    • pp.136-141
    • /
    • 2020
  • The purpose of this study was to investigate the action mechanism of the roots of Adenophora triphylla var. japonica extract (ATE) in 3T3-L1 adipocytes. Cell toxicity test by MTT assay and lipid accumulation was performed to evaluate the inhibitory effect on the differentiation of adipocyte from preadipocytes induced by MDI differentiation medium, while adipogenesis related proteins expression level were evaluated by western blotting. As a result, ATE inhibited MDI-induced adipocyte differentiation in 3T3-L1 cells dose-dependently without cytotoxicity. Our results showed that ATE inhibited the phosphorylation of IRS1, thereby decreasing the expression of PI3K110α and reducing the phosphorylation of AKT and mTOR, resulting in attenuated protein expression of C/EBPα, PPARγ, ap2 and FAS in 3T3-L1 cells. These results suggest anti-adipogenic functions for ATE, and identified IRS1 as a novel target for ATE in adipogenesis.

보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향 (Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes)

  • 이수정;김원일;강경화
    • 동의생리병리학회지
    • /
    • 제28권3호
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.

몰약(沒藥) 에탄올 추출물의 항비만에 관한 연구 (The Study on anti-obesity of Myrrh ethanol extract)

  • 백선재;김동희
    • 대한본초학회지
    • /
    • 제31권4호
    • /
    • pp.11-18
    • /
    • 2016
  • Objectives : The objective of this study was to investigate the effect of Myrrh 80% ethanol extract on adipocyte differentiation and adipogenesis in 3T3-L1 cell.Methods : Myrrh was prepared by extracting with 80% ethanol. Cell viability was assessed by MTT assay using 3T3-L1 cells. Anti-obesity activity was measured in lipid droplets and triglyceride (TG) accumulation in 3T3-L1 cells. We also analyzed the expression of C/EBPβ, C/EBPα, PPARγ, SREBP1c, and aP2 by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, we observed the production of fatty acid, acetyl-CoA carboxylase and Oil-red O stainingResults : No cytotoxicity from Myrrh 80% ethanol extracts was observed at the concentration of 1, 10, 100 (㎍/㎖) in 3T3-L1 cells. Treatment with Myrrh significantly suppressed the terminal differentiation of 3T3-L1 in a dose-dependent manner, as confirmed by a decrease in triglyceride and Fatty acid and Acetyl-CoA carboxylase. Also, Myrrh exhibited potential adipogenesis inhibition and downregulated the expression of pro-adipogenic transcription factors, such as sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα) and C/EBPβ, and adipocyte expressed genes, such as adipocyte fatty acid binding protein (aP2) and Fas. In addition, lipid accumulation determined by Oil-red O staining showed that Myrrh extract had inhibitory effects on lipid accumulation in 3T3-L1 cells.Conclusions : These results suggest that Myrrh suppresses obesity factors in 3T3-L1 cells. Myrrh may be a useful medical herbs for attenuating metabolic diseases such as obesity.