• Title/Summary/Keyword: 3D-FDM

Search Result 201, Processing Time 0.026 seconds

Numerical Analysis on Offshore Wind Power System Foundation (해상풍력단지 기초에 관한 수치해석적 연구)

  • Kim, Dong-Ho;Jang, Won-Yil;Kim, Seong-Yun;Shin, Sung-Ryul;Lim, Jong-Se;Yoon, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.355-361
    • /
    • 2009
  • Onshore wind farms having several problems, difficult to secure a building site and incur the enmity of the people. Therefore, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. If huge wind turbines are constructed, the offshore wind power base is concerned about subsidence. In order to confirm the ground stability, estimation of subsidence is necessary. In this paper, the subsidence is predicted by continuity model when the gravity and the mono-pile base are constructed on soft ground. The FLAC 3D, three dimensional FDM program, was adopted to analysis subsidence. Input factors are yielded by geological information at the yeompo quay in ulsan and the results of laboratory experiments. It has been compared that the original ground with improved ground under the gravity base, and constructed mono-pile under the mono-pile base.

A Study on Prediction Model Performance of Scaffold Pore Size Using Machine Learning Regression Method (머신 러닝 회귀 방안을 이용한 인공지지체 기공 크기 예측모델 성능에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • In this paper, We need to change all print factors when which print scaffold with 400 ㎛ pore using FDM 3d printer. Therefore the print quantity is 10 billion times, So we are difficult to print on workplace. To solve the problem, we used the prediction model based machine learning regression. We preprocessed and learned the securing print condition data, and we produced different kinds of prediction models. We predicted the pore size of scaffolds not securing with new print condition data using prediction models. We have derived the print conditions that satisfy the pore size of 400 ㎛ among the predicted print conditions of pore size. We printed the scaffolds 5 times on the condition. We measured the pore size of the printed scaffold and compared the average pore size with the predicted pore size. We confirmed that error was less than 1%, and we were identify the model with the highest pore size prediction performance of scaffold.

Structure Optimization and 3D Printing Manufacture Technology of Pull Cord Switch Components Applied to Power Plant Coal Yard (발전소 저탄장에 적용되는 풀코드스위치 부품의 구조최적화 3D 프린팅 제작기술 개발)

  • Lee, Hye-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.319-330
    • /
    • 2016
  • Recently, 3D printing technology has been applied to make a concept model and working mockup of an industrial application. On the other hand, this technology has limited applications in industrial products due to the materials and reliability of the 3D printed product. In this study, the components of a full cord switch module are proposed as a case of a 3D printed component that can be used as a substitute for a short period. These are hub-driven and lever lockup components that have the structural characteristics of breaking down frequently in the emergency operating status. To ensure the structural strength for a substitute period, research of structure optimization was performed because 3D printing technology has a limitation in the materials used. After optimizing the structure variables of the hub-driven component, reasonable results can be drawn in that the safety factors of the left and right switching mode are 1.243 (${\Delta}153.67%$) and 3.156 (${\Delta}404.96%$). The lever lockup component has a structural weak point that can break down easily on the lockup-part because of a cantilever shape and bending moment. The rib structure was applied to decrease the deflection. In addition, optimization of the structural variables was performed, showing a safety factor of 7.52(${\Delta}26%$).

A Study on the Thermal Fields Control using a Floating-type Current Control Structure (부유식 해수유동제어구조물의 유동제어 특성에 대한 연구)

  • Boo, Sung-Youn
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.147-158
    • /
    • 1999
  • Warm or waste water discharged from offshore-based facilities often causes environmental polution as it is transported to coastal area due to tidal actions. In this research a floating-type current control structure is introduced in order to reduce the pollutant spreading in the coastal area. Effectivenss of the structure is investigated through the numerical experiment which is based on a 3-D finite difference multi-level scheme. The warm-water spreading in the bay is reduced when the draft of the structure increases and its optimum draft is found to be between 0.25h and 0.65h, where h is the water depth. The proposed structure is also tested in the Gohyun Bay and it ts proven to be applied to controllling pollutant spreading if its draft is properly chosen.

  • PDF

Gait Implementation using a Kick Action for IWR-III Biped Walking Robot (이족보행로봇의 킥엑션을 이용한 보행 구현)

  • Jin, Kwang-Ho;Park, Chun-Ug;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.552-554
    • /
    • 1998
  • This paper deals with the gait generation of IWR-III using a kick action to have a walking pattern like human. For this, trajectory planning with the consideration of kick action is done in each walking step, and the coordinate transformation is done for simplifying the kinematics. Balancing motion is analyzed by FDM during the walking, By combining 4-types of pre-defined steps, multi-step walking is done. Using numerical simulator, dynamic analysis, ZMP analysis and system stability is confirmed. Walking motion is visualized by 3D- graphic simulator. As a result, trunk ahead motion effect and impactless smooth walking is implemented by experiment. Finally walking with kick action is implemented the IWR-III system.

  • PDF

A Study on Prediction Model of Scaffold Appearance Defect Using Machine Learning (기계 학습을 이용한 인공지지체 외형 불량 예측 모델에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.26-30
    • /
    • 2020
  • In this paper, we studied the problem if the experiment number occurring in order to identify defect in scaffold. We need to change each of the 5 print factor to predict defect when printing disk type scaffold using FDM 3d printer. So then the number of scaffold print will be more than 100,000 times. This experiment number is difficult to perform in the field. In order to solve this problem, we have produced a prediction model based on machine learning multiple linear regression using print conditions and defect scaffold data for print conditions. The prediction model produced was verified through experiments. The verification confirmed that the error was less than 0.5 %. We have confirmed that satisfied within the target margin of error 5 %.

The Usability Assessment of Self-developed Phantom for Evaluating Automatic Exposure Control System Using Three-Dimensions Printing (자동노출제어장치 평가를 위한 3D 프린팅 기반의 자체 제작 팬텀의 유용성 평가)

  • Lee, Ki-Baek;Nam, Ki-Chang;Kim, Ho-Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.147-153
    • /
    • 2020
  • This study was to evaluate the usability of self-developed phantom for evaluating automatic exposure control (AEC) using three-dimensions (3D) printer. 3D printer of fused deposition modeling (FDM) type was utilized to make the self-developed AEC phantom and image acquisitions were conducted by two different type of scanners. The self-developed AEC phantom consisted of four different size of portions. As a result, two types of phantom (pyramid and pentagon shape) were created according to the combination of the layers. For evaluating the radiation dose with the two types of phantom, the values of tube current, computed tomography dose index volume (CTDIvol), and dose length product (DLP) were compared. As a result, it was confirmed that the values of tube current were properly reflected according to the thickness, and the CTDIvol and DLP were not significantly changed regardless of AEC functions of different scanners. In conclusion, the self-developed phantom by using 3D printer could assess whether the AEC function works well. So, we confirmed the possibility that a self-made phantom could replace the commercially expensive AEC performance evaluation phantom.

Solvent-free UV-curable Acrylic Adhesives for 3D printer build sheet (3D 프린터 빌드시트용 무용제 UV 경화형 아크릴 점착제의 제조)

  • Lee, Bae Hwa;Park, Dong Hyup;Kim, Byung Jick
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2020
  • 3D printing technology enables proper objects to be made through an additive manufacturing method, but resulting in dimension deviation of the product due to contraction phenomenon as cooling melted filament resin injected from high-temperature use environment. In this research, we studied on acrylic adhesives for 3D printer build sheet in order to fabricate high-quality products with a precise shape and to well-mount without distortion. The solvent-free UV-curable acrylic adhesive formulation was designed by adding 4-acryloylmorpholine (ACMO) with high adhesion, toughness, glass transition temperature so that adhesion properties are stable at high temperature and products are easily mounted/detached from the adhesives. The designed formulation was polymerized through two-steps using post-addition of monomers. Using this, the acrylic adhesive was coated to make a film and then analyzed using various experimental techniques. As a result, the fabricated adhesive exhibited high glass transition temperature and there was little gap in peel strength before and after thermal treatment. Moreover, it was confirmed by rheological analysis that this adhesive can provide great bonding/debonding ability without distortion. We demonstrated the fabrication of a rectangular product using a 3D printing method using our acrylic adhesive as a build sheet. Mounting ability and workability were satisfactory and dimension deviation of the product was tiny. Because the product is easily detachable from the acrylic adhesive developed here than conventional build sheets, it is expected that this will provide work convenience to users who use the 3D printer.

Numerical simulation for surface settlement considering face vibration of TBM tunnelling in mixed-face condition (복합지반에서 TBM 굴진 진동을 고려한 지표침하에 대한 수치모델링)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.333-339
    • /
    • 2015
  • In this paper, the surface settlement resulted from the shallow TBM tunnelling has been numerically simulated. TBM tunnelling is especially used in urban area to avoid serious vibration and noise caused by explosion in NATM. Surface settlement is one of the most important problems encountered in all tunnelling and critical in urban areas. In this study, face vibration of TBM excavation is considered to estimate surface settlement trend according to TBM extrusion. The dynamic excavation forces are calculated by total torque on the TBM cutterhead in mixed-face of soil and weathered rock condition with shallow depth. A 3-dimensional FDM code is employed to simulate TBM tunnelling and mechanical-dynamic coupling analysis is performed. The 3D numerical analysis results showed that dynamic settlement histories and trend of surface settlement successfully. The maximum settlement occurred at the excavation point located at 2.5D behind the face, and the effect of face vibration on the surface settlement was verified in this study.

Numerical Study on Vertical Stress Estimation for Panel Pillars at Room and Pillar Mines (주방식 광산의 패널 광주 수직응력 추정을 위한 수치해석 연구)

  • Yoon, Dong-Ho;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.473-483
    • /
    • 2020
  • This paper examines the vertical stress change concentrated on mine pillar which occurs due to the stress disturbance from opening excavation at room and pillar mine by FLAC3D, a finite difference method (FDM) software. The mesh size combination is decided with a careful consideration of relative error and run-time, then its performance is verified. A series of numerical analyses is conducted and the vertical stress at central pillar was observed for the test cases of 1×1 to 11×11 mine pillars, 40 m to 320 m depth with 40 m difference. The results show that the vertical stress of pillar approaches to the similar value with the value estimated by tributary area theory(TAT) when the development area (NP) is increased or the height of overburden (HOB) is decreased, while it is overestimated in the opposite case. Furthermore, it also represents that the vertical stress factor (VSF) converges to a specific value when the depth is increased whille keeping the development area identical.