• Title/Summary/Keyword: 3D-Conformal Radiation Therapy

Search Result 90, Processing Time 0.025 seconds

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Evaluation of DVH and NTCP in Hepatoma for 3D Conformal Radiation Therapy (3차원 입체조형치료에 대한 간암의 선량분포와 정상조직손상확률의 평가)

  • Chung, Kap-Soo;Yang, Han-Joon;Ko, Shin-Gwan
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.79-82
    • /
    • 1997
  • Image-based three dimensional radiation treatment planning(3D RTP) has a potential of generating superior treatment plans. Advances in computer technology and software developments quickly make 3D RTP a feasible choice for routine clinical use. However, it has become clear that an evaluation of a 3D plan is more difficult than a 2D plan. A number of tools have been developed to facilitate the evaluation of 3D RTP both qualitatively and quantitatively. For example, beam's eye view(BEV) is one of the most powerful and time-saving method as a qualitative tools. Dose-volume histogram(DVH) has been proven to be one of the most valuable methods for a quantitative tools. But it has a limitation to evaluate several different plans for biological effects of the tissue and critical organ. Therefore, there is a strong interest in developing quantitative models which would predict the likely biological response of irradiated organs and tissues, such as tumor control probability(TCP) and normal tissue complication probability(NTCP). DVH and NTCP of hepatoma were evaluated for three dimensional conformal radiotherapy(3D CRT). Also, 3D RTP was analysed as a dose optimization based on beam arrangement and beam modulation.

  • PDF

3-Dimensional Conformal Radiation Therapy in Carcinoma of The Nasopharynx (비인강암의 3차원 입체조형치료에서 등가선량분포에 관한 연구)

  • Keum Ki Chang;Kim Gwi Eon;Lee Sang Hoon;Chang Sei Kyung;Lim Jihoon;Park Won;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.399-408
    • /
    • 1998
  • Purpose : This study was designed to demonstrate the potential therapeutic advantage of 3-dimensional (3-D) treatment planning over the conventional 2-dimensional (2-D) approach in patients with carcinoma of the nasopharynx. Materials and Methods : The two techniques were compared both qualitatively and quantitatively for the boost portion of the treatment (19.8 Gy of a total 70.2 Gy treatment schedule) in patient with T4. The comparisons between 2-D and 3-D plans were made using dose statistics, dose-volume histogram, tumor control probabilities, and normal tissue complication probabilities. Results : The 3-D treatment planning improved the dose homogeneity in the planning target volume. In addition, it caused the mean dose of the planning target volume to increase by 15.2$\%$ over 2-D planning. The mean dose to normal structures such as the temporal lobe, brain stem, parotid gland, and temporomandibular joint was reduced with the 3-D plan. The probability of tumor control was increased by 6$\%$ with 3-D treatment planning compared to the 2-D planning, while the probability of normal tissue complication was reduced. Conclusion : This study demonstrated the potential advantage of increasing the tumor control by using 3-D planning. but prospective studies are required to define the true clinical benefit.

  • PDF

Clinical Experience of Three Dimensional Conformal Radiation Therapy for Non-Small Cell Lung Cancer (비소세포성 폐암에서 3차원 입체조형 방사선 치료 성적)

  • Choi Eun Kyung;Lee Byong Yong;Kang One Chul;Nho Young Ju;Chung Weon Kuu;Ahn Seung Do;Kim Jong Hoon;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.265-274
    • /
    • 1998
  • Purpose : This prospective study has been conducted to assess the value of three dimensional conformal radiation therapy (3DCRT) for lung cancer and to determine its potential advantage over current treatment approaches. Specific aims of this study were to 1) find the most ideal 3DCRT technique 2) establish the maximum tolerance dose that can be delivered with 3DCRT and 3) identify patients at risk for development of radiation pneumonitis. Materials and Methods : Beginning in Nov. 1994, 95 patients with inoperable non-small cell lung cancer (stage I; 4, stage II; 1, stage IIIa; 14, stage IIIb; 76) were entered onto this 3D conformal trial Areas of known disease and elective nodal areas were initially treated to 45 Gy and then using 3DCRT technique 65 to 70 Gy of total dose were delivered to the gross disease. Sixty nine patients received 65 Gy of total dose and 26 received 70 Gy Seventy eight patients (82.1$\%$) also received concurrent MVP chemotherapy. 3DCRT plans were compared with 2D plans to assess the adequacy of dose delivery to target volume, dose volume histograms for normal tissue, and normal tissue complication Probabilities (NTCP). Results : Most of plans (78/95) were composed of non-coplanar multiple (4-8) fields. Coplanar segmented conformal therapy was used in 17 pateints, choosing the proper gantry angle which minimize normal lung exposure in each segment. 3DCRT gave the full dose to nearly 100$\%$ of the gross disease target volume in all patients. The mean NTCP for ipsilateral lung with 3DCRT (range; 0.17-0.43) was 68$\%$ of the mean NTCP with 2D treatment planning (range; 0.27-0.66). DVH analysis for heart showed that irradiated volume of heart could be significantly reduced by non-coplanar 3D approach especially in the case of left lower lobe lesion. Of 95 patients evaluable for response, 75 (79$\%$), showed major response including 25 (26$\%$) with complete responses and 50 (53$\%$) with partial responses. One and two rear overall survivals of stage III patients were 62.6$\%$ and 35.2$\%$ respectively. Twenty percent (19/95) of patients had pneumonitis; Eight patients had grade 1 pneumonitis and 11 other patients had grade 2. Comparison of the average of NTCP for lung showed a significant difference between patients with and without radiation pneumonitis. Average NTCP for Patients without complication was 62$\%$ of those with complications. Conclusions : This study showed that non-coplanar multiple fields (4-8) may be one of the ideal plans for 3DCRT for lung cancer. It also suggested that 3DCRT may provide superior delivery of high dose radiation with reduced risk to normal tissue and that NTCP can be used as a guideline for the dose escalation.

  • PDF

Study on Tumor Control Probability and Normal Tissue Complication Probability in 3D Conformal Radiotherapy (방사선 입체조형치료에 대한 종양치유확율과 정상조직손상확율에 관한 연구)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.227-245
    • /
    • 1998
  • A most appropriate model of 3-D conformal radiotherapy has been induced by clinical evaluation and animal study, and therapeutic gains were evaluated by numerical equation of tumor control probability(TCP) and normal tissue complication probability (NTCP). The radiation dose to the tumor and the adjacent normal organs was accurately evaluated and compared using the dose volume histogram(DVH). The TCP and NTCP was derived from the distribution of given dosage and irradiated volume, and these numbers were used as the biological index for the assessment of the treatment effects. Ten patients with liver disease have been evaluated and 3 dogs were sacrificed for this study. Based on the 3-D images of the tumor and adjacent organs, the optimum radiation dose and the projection direction which could maximize the radiation effect while minimizing the effects to the adjacent organs could be decided. 3). The most effective collimation for the normal adjacent organs was made through the beams eye view with the use of multileaf collimator. When the dose was increased from 50Gy to 70Gy, the TCP for the conventional 2-port radiation and the 5-port multidimensional therapy was 0.982 and 0.995 respectively, while the NTCP was 0.725 and 0.142 respectively, suggesting that the 3-D conformal radiotherapy might be the appropriate therapy to apply sufficient radiation dose to the tumor while minimizing the damages to the normal areas of the liver. Positive correlation was observed between the NTCP and the actual complication of the normal liver in the animal study. The present study suggest that the use of 3-D conformal radiotherapy and the application of the mathematical models of TCP and NTCP may provide the improvements in the treatment of hepatoma with enhanced results.

  • PDF

Importance of PET/CT Scan Use in Planning Radiation Therapy for Lymphoma

  • Milana, Mitric-Askovic;Marko, Erak;Miroslav, Latinovic;Tihomir, Dugandzija
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.2051-2054
    • /
    • 2015
  • Background: Radiation therapy is a key part of the combined modality treatment for Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), which can achieve locoregional control of disease. The 3D-conformal radiation oncology can be extended-field (EFRT), involved-field (IFRT) and involved node (INRT). New techniques have resulted in a smaller radiation field and lower dose for critical organs such as lung heart and breast. Materials and Methods: In our research, we made a virtual simulation for one patient who was treated in four different radiotherapeutic techniques: mantle field (MFRT), EFRT, IFRT and INRT. After delineatiion we compared dose-volume histograms for each technique. The fusion of CT for planning radiotherapy with the initial PET/CT was made using Softver Xio 4.6 in the Focal program. The dose for all four techniques was 36Gy. Results: Our results support the use of PET/CT in radiation therapy planning. With IFRT and INRT, the burden on the organs at risk is less than with MFRT and EFRT. On the other hand, the dose distribution in the target volume is much better with the latter. Conclusions: The aim of modern radiotherapy of HL and NHL is to reduce the intensity of treatment and therefore PET/CT should be used to reduce and not increase the amount of tissue receiving radiation.

Intensity-modulated radiation therapy in early stage squamous cell carcinoma of the larynx: treatment trends and outcomes

  • Wegner, Rodney E.;Abel, Stephen;Bergin, John J.;Colonias, Athanasios
    • Radiation Oncology Journal
    • /
    • v.38 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • Purpose: Definitive radiotherapy remains a primary treatment option for early stage glottic cancer. Intensity-modulated radiation therapy (IMRT) has emerged as the standard treatment technique for advanced head and neck cancers, whereas three-dimensional conformal radiotherapy (3D-CRT) has remained standard for early glottic cancers. We used the National Cancer Database (NCDB) to identify predictors of IMRT use and effect on outcome in these patients. Materials and Methods: We queried the NCDB from 2004-2015 for squamous cell carcinoma of the glottic larynx staged Tis-T2N0 treated with radiation alone. Logistic regression was used to identify predictors of IMRT. Cox regression was used to identify factors predictive of overall survival. Propensity matching was conducted to account for indication bias. Results: We identified 15,627 patients, of which 11% received IMRT. IMRT use rose from 2% in 2004 to 16% in 2015. Predictors of IMRT include: increased comorbidity, T2 stage, urban location, chemotherapy, treatment at an academic center, and later treatment year. Predictors of improved survival were female gender, higher income, lower stage, no chemotherapy, academic facility, and more remote year. There was no difference in survival between 3D-CRT and IMRT across all stages. Conclusions: The rate of IMRT use for early stage glottic laryngeal cancer has increased over time. There was no difference in outcome in patients receiving IMRT versus 3D-CRT across the cohort.

Dosimetric comparison between modulated arc therapy and static intensity modulated radiotherapy in thoracic esophageal cancer: a single institutional experience

  • Choi, Kyu Hye;Kim, Jina;Lee, Sea-Won;Kang, Young-nam;Jang, HongSeok
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Purpose: The objective of this study was to compare dosimetric characteristics of three-dimensional conformal radiotherapy (3D-CRT) and two types of intensity-modulated radiotherapy (IMRT) which are step-and-shoot intensity modulated radiotherapy (s-IMRT) and modulated arc therapy (mARC) for thoracic esophageal cancer and analyze whether IMRT could reduce organ-at-risk (OAR) dose. Materials and Methods: We performed 3D-CRT, s-IMRT, and mARC planning for ten patients with thoracic esophageal cancer. The dose-volume histogram for each plan was extracted and the mean dose and clinically significant parameters were analyzed. Results: Analysis of target coverage showed that the conformity index (CI) and conformation number (CN) in mARC were superior to the other two plans (CI, p = 0.050; CN, p = 0.042). For the comparison of OAR, lung V5 was lowest in s-IMRT, followed by 3D-CRT, and mARC (p = 0.033). s-IMRT and mARC had lower values than 3D-CRT for heart $V_{30}$ (p = 0.039), $V_{40}$ (p = 0.040), and $V_{50}$ (p = 0.032). Conclusion: Effective conservation of the lung and heart in thoracic esophageal cancer could be expected when using s-IMRT. The mARC was lower in lung $V_{10}$, $V_{20}$, and $V_{30}$ than in 3D-CRT, but could not be proven superior in lung $V_5$. In conclusion, low-dose exposure to the lung and heart were expected to be lower in s-IMRT, reducing complications such as radiation pneumonitis or heart-related toxicities.

Clinical Implementation of an In vivo Dose Verification System Based on a Transit Dose Calculation Tool for 3D-CRT

  • Jeong, Seonghoon;Yoon, Myonggeun;Chung, Weon Kuu;Chung, Mijoo;Kim, Dong Wook
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1571-1576
    • /
    • 2018
  • We developed and evaluated an algorithm to calculate the target radiation dose in cancer patients by measuring the transmitted dose during 3D conformal radiation treatment (3D-CRT) treatment. The patient target doses were calculated from the transit dose, which was measured using a glass dosimeter positioned 150 cm from the source. The accuracy of the transit dose algorithm was evaluated using a solid water phantom for five patient treatment plans. We performed transit dose-based patient dose verification during the actual treatment of 34 patients who underwent 3D-CRT. These included 17 patients with breast cancer, 11 with pelvic cancer, and 6 with other cancers. In the solid water phantom study, the difference between the transit dosimetry algorithm with the treatment planning system (TPS) and the measurement was $-0.10{\pm}1.93%$. In the clinical study, this difference was $0.94{\pm}4.13%$ for the patients with 17 breast cancers, $-0.11{\pm}3.50%$ for the eight with rectal cancer, $0.51{\pm}5.10%$ for the four with bone cancer, and $0.91{\pm}3.69%$ for the other five. These results suggest that transit-dosimetry-based in-room patient dose verification is a useful application for 3D-CRT. We expect that this technique will be widely applicable for patient safety in the treatment room through improvements in the transit dosimetry algorithm for complicated treatment techniques (including intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT).

Development of a Verification Tool in Radiation Treatment Setup (방사선치료 시 환자자세 확인을 위한 영상 분석 도구의 개발)

  • 조병철;강세권;한승희;박희철;박석원;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2003
  • In 3-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), many studies on reducing setup error have been conducted in order to focus the irradiation on the tumors while sparing normal tissues as much as possible. As one of these efforts, we developed an image enhancement and registration tool for simulators and portal images that analyze setup errors in a quantitative manner. For setup verification, we used simulator (films and EC-L films (Kodak, USA) as portal images. In addition, digital-captured images during simulation, and digitally-reconstructed radiographs (DRR) can be used as reference images in the software, which is coded using IDL5.4 (Research Systems Inc., USA). To improve the poor contrast of portal images, histogram-equalization, and adaptive histogram equalization, CLAHE (contrast limited adaptive histogram equalization) was implemented in the software. For image registration between simulator and portal images, contours drawn on the simulator image were transferred into the portal image, and then aligned onto the same anatomical structures on the portal image. In conclusion, applying CLAHE considerably improved the contrast of portal images and also enabled the analysis of setup errors in a quantitative manner.

  • PDF