• Title/Summary/Keyword: 3D vehicle model

Search Result 324, Processing Time 0.027 seconds

Accurate Parked Vehicle Detection using GMM-based 3D Vehicle Model in Complex Urban Environments (가우시안 혼합모델 기반 3차원 차량 모델을 이용한 복잡한 도시환경에서의 정확한 주차 차량 검출 방법)

  • Cho, Younggun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Recent developments in robotics and intelligent vehicle area, bring interests of people in an autonomous driving ability and advanced driving assistance system. Especially fully automatic parking ability is one of the key issues of intelligent vehicles, and accurate parked vehicles detection is essential for this issue. In previous researches, many types of sensors are used for detecting vehicles, 2D LiDAR is popular since it offers accurate range information without preprocessing. The L shape feature is most popular 2D feature for vehicle detection, however it has an ambiguity on different objects such as building, bushes and this occurs misdetection problem. Therefore we propose the accurate vehicle detection method by using a 3D complete vehicle model in 3D point clouds acquired from front inclined 2D LiDAR. The proposed method is decomposed into two steps: vehicle candidate extraction, vehicle detection. By combination of L shape feature and point clouds segmentation, we extract the objects which are highly related to vehicles and apply 3D model to detect vehicles accurately. The method guarantees high detection performance and gives plentiful information for autonomous parking. To evaluate the method, we use various parking situation in complex urban scene data. Experimental results shows the qualitative and quantitative performance efficiently.

Validation of Driver Steering Model with Vehicle Test (실차 실험을 통한 운전자 조향 모델의 검증)

  • Chung Taeyoung;Lee Gunbok;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.

A Method for 3-D Dynamic Analysis of Tracked Vehicles on Soft Terrain of Seafloor (해저 연약 지반 주행차량의 3차원 동력학 해석 기법)

  • Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.149-154
    • /
    • 2002
  • A simplified 3D dynamic model of tracked vehicle crawling on cohesive soft soil is investigated. The vehicle is assumed as rigid body with 6-dof. Cohesive soft soil is modeled through relations: pressure to sinkage, shear displacement to shear stress, and shear to dynamic sinkage. Equations of motion of vehicle are derived with respect to the body-fixed coordinates. In order to investigate 3D transient dynamics of tracked vehicle, Newmark's method is employed based on incremental-iterative algorithm. 3D dynamic simulations are conducted for a tracked vehicle model and steering performance is investigated.

  • PDF

Development of a Dynamic Simulator for Moving Capability Estimation of Track Vehicle (궤도 차량의 기동성능 예측을 위한 동적 시뮬레이터 개발)

  • 조길수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.137-141
    • /
    • 1999
  • In this paper, we developed a Windows 95 version off-line programming system which can simulate a track vehicle model in 3D graphics space. The track vehicle was adopted as an objective model. The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Development of a Simulator and Dynamic Modeling for Moving Capability estimation of Track Vehicle (궤도 차량의 기동성능 예측을 위한 동적 모델링 및 시뮬레이터 개발)

  • 김종수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.194-198
    • /
    • 2000
  • In this paper, we developed a Windows 98 version off-line programming system which can simulate a track vehicle model in 3D graphics space. The track vehicle was adopted as an objective model. The interface between users and the off-line program system in the Windows 98' graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D graphics.

  • PDF

Development of a Simulator and Dynamic Modeling for Moving Capability Estimation of Track Vehicle (궤도 차량의 기동성능 예측을 위한 동적 모델링 및 시뮬레이터 개발)

  • 김종수;한성현;김용태;이경식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.305-305
    • /
    • 2000
  • In this paper, we developed a Windows 98 version off-line programming system which can simulate a track vehicle model in 3D graphics space. The track vehicle was adopted as an objective model. The interface between users and the off-line program system in the Windows 98's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

Dynamic Characteristics Analysis of a Four-Wheel Steering Vehicle Using a Driver-Vehicle Model (운전자-자동차모델을 이용한 4륜조향자동차의 주행특성 해석)

  • Lee, Y.H.;Kim, S.I.;Suh, M.W.;Kim, D.Y.;Kim, D.R.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.119-128
    • /
    • 1995
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. Especially, the presented analysis results are obtained by using the ISO test codes such as lane change, double lane change and slalom, and the effects of the driver's steering response time and vehicle speed are examined on the responsiveness and stability of vehicle.

  • PDF

A Study on the Dynamic Wheel Loads of 3-D Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 동적 차륜하중에 관한 연구)

  • Chung, Tae Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • In this paper, research for dynamic wheel loads of 3-D vehicle model considering tire enveloping model is carried out. Heavy trucks with 2-axles and 3-axles are modeled by 7-d.o.f. and 8-d.o.f., in which contact length of tire and pitching of tandem spring axles is considered. Dynamic equations of vehicle are derived by using the Lagrange's equation and solution of the equation is calculated by 5th Runge-Kutter method. The validity of the developed 3-D vehicle model is demonstrated by comparing the results obtained by the present method and experimental data by Whittemore. The maximum impact factors of tire force are calculated when vehicle models of 8ton and 15ton dump truck are running on the different class roads with 1.0km and on the various step bump.

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (1) Integrated Performance Modeling (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (1) 통합성능분석 모델개발)

  • Lim, Sunghoon;Lim, Woochul;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.316-323
    • /
    • 2014
  • This paper proposes the 3D modeling and simulation technique for predicting the integrated performance of combat vehicle. To consider the practical driving and firing condition of a combat vehicle, the full vehicle model, which can define the six degrees-of-freedom of vehicle motion and various firing angles, is developed. The critical design parameters such as the stiffness and damping coefficient of suspension system are applied to construct the analysis model of vehicle. A simple ballistic model, which incorporates the empirical interior ballistic model and the point mass trajectory model, is built to estimate the firing range and the firing recoil force. To predict the integrated performance and analyze the effect of system parameters, MATLAB/SIM-ULINK model of a combat vehicle for performing the real time simulation is also developed. Several simulation tests incorporating the road bump and the firing recoil force are presented to confirm the effectiveness of the proposed vehicle model.

Development of a Simulator for Moving Capability Estimation of Track Vehicle (궤도 차량의 기동성능 예측 시뮬레이터 개발)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.65-70
    • /
    • 1998
  • In this paper, we developed a Windows 95 version off-line programming system which can simulate a track vehicle model in 30 graphics space. The track vehicle was adopted as an objective model. The interface between users and the off-line program system in the Windows 95's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc were utilized for 3D Graphics.

  • PDF