• Title/Summary/Keyword: 3D technology

Search Result 16,288, Processing Time 0.05 seconds

Consideration for Application of 3D Printing Technology to Nuclear Power Plant (3D프린팅 기술의 원전 적용을 위한 고찰)

  • Jang, Kyung-Nam;Choi, Sung-Nam;Lee, Sung-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.117-124
    • /
    • 2020
  • 3D printing is a technology that has significantly grown in recent years, particularly in the aerospace, defense, and medical sectors where it offers significant potential cost savings and reduction of the supply chain by allowing parts to be manufactured on-site rather than at a distance supplier. In nuclear industry, 3D printing technology should be applied according to the manufacturing trend change. For the application of 3D printing technology to the nuclear power plant, several problems, including the absence of code & standards of materials, processes and testing & inspection methods etc, should be solved. Preemptively, the improvement of reliability of 3D printing technology, including mechanical properties, structural performance, service performance and aging degradation of 3D printed parts should be supported. These results can be achieved by collaboration of many organizations such as institute, 3D printer manufacturer, metal powder supplier, nuclear part manufacturer, standard developing organization, and nuclear utility.

Use of 3D Printing Technology to Create Personal Fashion: UTAUT and Need for Uniqueness

  • Popov, Darinka;Koo, Sumin
    • Journal of Fashion Business
    • /
    • v.24 no.6
    • /
    • pp.1-17
    • /
    • 2020
  • This study investigated the perceptions, attitudes, and behaviors of potential consumers toward using 3D printers to create their personal clothes. An online survey and a series of Welch's t-tests and ANOVA were conducted to investigate the differences in demographic characteristics, prior experiences in 3D printing, and levels of need for uniqueness among the sub-groups. A multiple linear regression analysis was performed to test the relationships among variables of the modified Unified Theory of Acceptance and Use of Technology (UTAUT). There were significant differences in gender and prior experiences regarding the UTAUT of personal 3D printing. The need for uniqueness has a positive effect on consumers' intention to use 3D printing technology for designing personal clothes and perception of the price of the 3D printer used to create individual clothes is important. Positive relationships were found between UTAUT variables as well as the use and purchase intentions. This study analyzed the potential for popularization of 3D printing technology to create fashion items and explore consumer willingness to embrace and use personal fashion designs. The results of this study are expected to assist consumers, designers, retailers and marketers, and experts in 3D printing technology by providing insight into consumer awareness and acceptance of personalized 3D-printed fashion and products.

A case study of ceramic design that combines 3D printing technology (3D 프린팅 기술을 융합한 도자디자인 사례 연구)

  • Choi, Jung-Hwa;Kim, Won-Seok
    • Journal of Digital Convergence
    • /
    • v.17 no.4
    • /
    • pp.309-317
    • /
    • 2019
  • The purpose of this study is to review the influence of 3D printing technology on the formability and artistic value of ceramic works through a theoretical review of 3D printing technology and a case study of ceramic works that incorporate them creatively. Thus, the following conclusions were drawn from the analysis of the ceramic works of seven artists and two design teams. First, digital production that incorporates 3D printing technology into works can be applied to data applications and changes, unlike the existing manual methods, and the artist's unique creative artwork is possible. Second, a new paradigm has emerged that expresses the new material, method, advanced digital technology, and more stereoscopic and colorful sculptures out of the traditional ceramic concepts. In the future, I hope to find new methodology that meets the developing digital technology through continuous research and utilization of 3D printing and realizing new value of ceramic design.

The Analysis of Learner's Motivation and Satisfaction with 3D Printing in Science Classroom (3D 프린팅을 활용한 과학 수업에서 학습자의 동기와 만족감 분석)

  • Byun, Moon-Kyoung;Jo, Jun-Ho;Cho, Moon-Heum
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.5
    • /
    • pp.877-884
    • /
    • 2015
  • Technology is an important means to enhance students' understanding about scientific concepts. In particular, newly introduced 3D printing technology has great potential to help students learn scientific concepts better. 3D printing is a process for a creating physical object with a three dimensional model. In this study, we explored two types of learners' (students vs. adults) motivation and satisfaction with 3D printing technology. With regard to motivation, student learners showed higher task value, self-efficacy for learning, and satisfaction than adult learners. The result implied that 3D printing technology is more effective to student learners than adult learners. In addition, for adult learner group, negative relationship between technology and satisfaction was found. Therefore, support for reducing the technology anxiety for adult learners is necessary. Further discussions are provided for the research and application of 3D printing technology in science classroom.

A Proposal of 3D Printing Service Platform for Construction Industry through case analysis (사례 분석을 통한 건설 3D 프린팅 서비스 플랫폼 제안)

  • Kim, Jongsung;Kim, Sun-Kyum;Seo, Myoung-Bae;Kim, Tae-Hoon;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.53-61
    • /
    • 2017
  • Recently, there has been an increase in the number of web-based three-dimensional (3D) printing-related service platforms, which allow consumers to collect 3D modeling data, make requests for production, and receive goods through a distribution service using the service platform. The application of 3D printing technology has been expanded to the construction field, yet no guidelines for the related service platform or operation examples can be found. Therefore, the functions of 10 web-based 3D printing service platforms actively used in other industries were investigated and analyzed in this study, and the analysis results were used as a guideline to develop a 3D printing service platform for the construction industry. In addition, the design, construction and distribution services to be equipped with the construction 3D printing service integration platform were presented by creating the driving scenario of the platform. As 3D printing technology develops, the overall construction and architectural paradigms for design, construction and distribution will change. To prepare for such changes and to pioneer the digital construction market in the future, the role of the 3D printing service platform is expected to increase continually.

Application of 3D Printing Technology in Seismic Physical Modeling (탄성파 축소모형 실험에서의 3D 프린팅 기술 활용)

  • Kim, Daechul;Shin, Sungryul;Chung, Wookeen;Shin, Changsoo;Lim, Kyoungmin
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.56 no.3
    • /
    • pp.260-269
    • /
    • 2019
  • The application of 3D printing technology in seismic physical modeling was investigated and the related domestic research was conducted. First, seven types of additive manufacturing methods were evaluated. In this report, to confirm the application of 3D printing technology, related studies in domestic and international journals of geophysics were searched and a comprehensive analysis was conducted according to year and the additive manufacturing type. The analysis showed that studies on 3D printing technology have been dominantly conducted since the 2010s, which corresponds to the time when 3D printers were commercialized. Moreover, 87% of the studies used the material extrusion additive manufacturing method, and the research was conducted in specific universities. This research can be used as basic data for application of 3D printing technology in geophysics.

3D Printing Technology and Its Application on Tissue Engineering and Regenerative Medicine (3D 프린팅 기술의 조직공학 및 재생의학 분야 응용)

  • Lee, Junhee;Park, Sua;Kim, Wan Doo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.21-26
    • /
    • 2013
  • In this paper, we introduced various 3D printing technology and it's application on tissue engineering and regenerative medicine. Using the 3D printing technology, Korea Institute of Machinery and Materials (KIMM) has developed 3D bio-printing system. Various 3D tissue engineered scaffolds have been fabricated by the 3D bio-printing system. Cell printing system has been also developed and it is the fundamental technology for organ regeneration in tissue engineering and regenerative medicine.

Three-Dimensional Printing Technology in Orthopedic Surgery (정형외과 영역에서의 삼차원 프린팅의 응용)

  • Choi, Seung-Won;Park, Kyung-Soon;Yoon, Taek-Rim
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.103-116
    • /
    • 2021
  • The use of 3-dimensional (3D) printing is becoming more common, and its use is increasing in the orthopedic surgery. Currently, there are four major methods of using 3D printing technology in orthopedic surgery. First, surgical planning simulation using 3D printing model; second, patient-specific surgical instruments; third, production of customized prosthesis using 3D printing technique; fourth, patient-specific prosthesis produced by 3D printing. The areas of orthopedic surgery where 3D printing technology can be used are shoulder joint, spine, hip and pelvis, knee joints, ankle joint, and tumors. Since the diseases and characteristics handled by each area are different, the method of using 3D printing technology is also slightly different in each area. However, using 3D printing technology in all areas can increase the efficiency of surgery, shorten the surgery time, and reduce radiation exposure intraoperatively. 3D printing technology can be of great help in treating patients with particularly complex and difficult orthopedic diseases or fractures. Therefore, the orthopedic surgeon should make the most of the benefits of the 3D printing technology so that patient can be treated effectively.

A Study on Development of Design Support Tool for Building 3D Printing (건축물 3D 프린팅 설계지원도구 개발에 대한 연구)

  • Park, Hyung-Jin;Seo, Myoung-Bae;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.182-189
    • /
    • 2019
  • 3D printing technology is changing the paradigm of consumer-oriented design in supplier-oriented mass production. 3D printing technology in construction is expected to be able to replace existing wet methods along with modular construction. Recently, a number of cases of building construction using 3D printing using mortar-based materials have been announced in many regions, including North America, Europe, and Asia. In this study, we developed a design support tool with a slicing function to output 3D modeling for architecture for a 3D printing machine. We analyzed the process and the function of slicing programs that are commercially available. Seven slicing functions required for the architectural field were derived by analyzing cases, expert reviews, and related literature. The derived functions were extended from the slicing functions to develop the design support tools. Detailed algorithms and processes need to be developed for future derived functions.

Design of 3D Laser Radar Based on Laser Triangulation

  • Yang, Yang;Zhang, Yuchen;Wang, Yuehai;Liu, Danian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2414-2433
    • /
    • 2019
  • The aim of this paper is to design a 3D laser radar prototype based on laser triangulation. The mathematical model of distance sensitivity is deduced; a pixel-distance conversion formula is discussed and used to complete 3D scanning. The center position extraction algorithm of the spot is proposed, and the error of the linear laser, camera distortion and installation are corrected by using the proposed weighted average algorithm. Finally, the three-dimensional analytic computational algorithm is given to transform the measured distance into point cloud data. The experimental results show that this 3D laser radar can accomplish the 3D object scanning and the environment 3D reconstruction task. In addition, the experiment result proves that the product of the camera focal length and the baseline length is the key factor to influence measurement accuracy.