• Title/Summary/Keyword: 3D shape

Search Result 3,412, Processing Time 0.029 seconds

Study of Aerodynamic Design Optimization Using Genetic Algorithm (유전 알고리즘을 이용한 공력 형상 최적화 연구)

  • Kim S. W.;Kwon J. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • Genetic Algorithm(GA) is applied to aerodynamic shape optimization and demonstrated its merits in global searching ability and the independency of differentiability. However, applications of GA are limited due to slow convergence rate, premature termination, and high computing costs. The present aerodynamic designs such as wing shape optimizations using GA have seldom been applied because of high computing costs. This paper has two objects; improvement of the efficiency of GA and application of GA into aerodynamic shape optimization for 2D and 3D wings. The study indicates that GA can be applied to aerodynamic design and its performance is comparable to traditional design methods.

  • PDF

A Study on the Production Mechanisms of Residual Stress in Welded T-joint of Steel Pipe Member (T형 강관 용접 이음부의 잔류응력 생성기구에 관한 연구)

  • 장경호;장갑철;경장현;이은택
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2003
  • Steel members have advantages of resisting torsion and axial compression. In design, residual stresses at the welded joint of T-shape steel pipes are one of the most important points to be considered. In this paper, characteristics of residual stresses of welded joints are clarified by carrying out 3D non-steady heat conduction analysis and 3D thermal elastic-plastic FE-analysis. According to the results, the production mechanism of residual stresses at the welded joint of T-shape steel pipe is clarified. In this paper, circumferential stresses depended on thermal histories but axial and radial stresses were more dependent on geometrical shape than thermal histories. Residual stresses in the axial direction on the lower part of pipe member were tensile, controlled by geometrical shape. However, in case of middle part, residual stresses in all the directions were controlled by thermal histories.

Obtaining 3D Shape of Specular Surface Using Five Degrees of Freedom Camera System

  • Yusuf, Khairi;Miyake, Tetsuo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.41-44
    • /
    • 1998
  • In this paper, a new method of obtaining specular surface shape by using five degrees of freedom camera system is described. The normal vectors of the surface are extracted by achieving the coincident between the camera axis and the surface normal vector. This method uses a five degrees of freedom (5DOF) camera to fulfill this task. From the normal vector data, the shape of the surface is reconstructed. The result shows that the methodology improves the 3-D shape of object measurement with good accuracy.

  • PDF

Three-dimensional Shape Recovery from Image Focus Using Polynomial Regression Analysis in Optical Microscopy

  • Lee, Sung-An;Lee, Byung-Geun
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.411-420
    • /
    • 2020
  • Non-contact three-dimensional (3D) measuring technology is used to identify defects in miniature products, such as optics, polymers, and semiconductors. Hence, this technology has garnered significant attention in computer vision research. In this paper, we focus on shape from focus (SFF), which is an optical passive method for 3D shape recovery. In existing SFF techniques using interpolation, all datasets of the focus volume are approximated using one model. However, these methods cannot demonstrate how a predefined model fits all image points of an object. Moreover, it is not reasonable to explain various shapes of datasets using one model. Furthermore, if noise is present in the dataset, an error will be generated. Therefore, we propose an algorithm based on polynomial regression analysis to address these disadvantages. Our experimental results indicate that the proposed method is more accurate than existing methods.

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity

  • Tlidji, Youcef;Benferhat, Rabia;Tahar, Hassaine Daouadji
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.217-229
    • /
    • 2021
  • The effect of distribution shape of porosity using a quasi-3D theory for free vibration analysis of FG microbeams is studied analytically in the present paper. The microbeams are simply-supported and nonhomogeneous, with power function variation of Young's modulus along their thickness. The modified coupled stress theory is utilized to consolidate size dependency of microbeam. Both even and uneven distribution shape of porosity are considered and the effective properties of porous FG microbeams are defined by theoretical formula with an additional term of porosity. The equation of motion is obtained through Hamilton's principle, however, Navier type solution method is used to obtain frequencies. The influences played by many parameters are also investigated.

Examination of the Effect of Reference on Shape Perception during Pursuit by Eye Movements Recording and Analysis (눈 운동 측정 및 분석을 이용한 추적 눈 운동 동안의 모양지각 왜곡에 대한 참조대상의 영향 검증)

  • Li Hyung-Chul;Cornelissen Frans;Brenner Eli
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.3
    • /
    • pp.175-188
    • /
    • 2005
  • Recently, Li, Brenner, Cornelissen and Kim (2002) reported that 2D shape perception during pursuit eye movement just reflected the retinal image, and this result implies that the visual system ignored the extra-retinal information. In reality, however, we usually do not experience the perceptual distottion of 2D shape during pursuit eye movement. One Possibility is that the visual system night exploit the fact that the relative location between objects on retinal image is constantly maintained even during pursuit eye movement. The present research examined this possibility. Interestingly, perceptual distortion of 2D shape was observed even in the presence of reference, however, the amount of distortion decreased compared to when the reference does not exist. The distance between the reference and the target affected the perceptual distortion. These results imply that reference information is used in 2D shape perception during pursuit eye movement but it cannot completely explain the stable and accurate representation of 2D shape perception during pursuit eye movement.

  • PDF

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.

An Optimal Thresholding Method for the Voxel Coloring in the 3D Shape Reconstruction

  • Ye, Soo-Young;Kim, Hyo-Sung;Yi, Young-Youl;Nam, Ki-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1695-1700
    • /
    • 2005
  • In this paper, we propose an optimal thresholding method for the voxel coloring in the reconstruction of a 3D shape. Our purposed method is a new approach to resolve the trade-off error of the threshold value on determining the photo-consistency in the conventional method. Optimal thresholding value is decided to compare the surface voxel of photo-consistency with inside voxel on the optic ray of the center camera. As iterating the process of the voxels, the threshold value is approached to the optimal value for the individual surface voxel. And also, graph cut method is reduced to the surface noise on eliminating neighboring voxel. To verify the proposed algorithm, we simulated in the virtual and real environment. It is advantaged to speed up and accuracy of a 3D face reconstruction by applying the methods of optimal threshold and graph cut as compare with conventional algorithms.

  • PDF

Merge of VRML Mesh for 3D Shape Data Compression and Transmission (3D 형상 데이터의 압축 및 전송을 위한 VRML 메쉬의 병합에 관한 연구)

  • 장태범;문광원;정재열;김덕수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.89-95
    • /
    • 2002
  • VRML data, which is mainly structural element, is frequently used for modeling and visualizing 3D objects. Although there can be variations, it is a usual practice to represent 3D shapes in VRML format. Ever since the advent of Internet, there have been strong needs to transfer shape data through Internet. Because of this need, it is necessary to transform a data file in VRML or similar format into a more convenient form to transfer through the network. In a VRML file, a model is sometimes divided into a set of triangle meshes due to several practical reasons. However, this causes various demerits for the fast transmission. Therefore, it is more efficient to merge the mesh sets into one mesh set for the transmission. In this paper, we present the problems in the merge process and the techniques to handle the situation.