• Title/Summary/Keyword: 3D sampling

Search Result 689, Processing Time 0.026 seconds

Novel Compressed Sensing Techniques for Realistic Image (실감 영상을 위한 압축 센싱 기법)

  • Lee, Sun Yui;Jung, Kuk Hyun;Kim, Jin Young;Park, Gooman
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.59-63
    • /
    • 2014
  • This paper describes the basic principles of 3D broadcast system and proposes new 3D broadcast technology that reduces the amount of data by applying CS(Compressed Sensing). Differences between Sampling theory and the CS technology concept were described. Recently proposed CS algorithm AMP(Approximate Message Passing) and CoSaMP(Compressive Sampling Matched Pursuit) were described. This paper compared an accuracy between two algorithms and a calculation time that image data compressed and restored by these algorithms. As result determines a low complexity algorithm for 3D broadcast system.

Novel Transmission System of 3D Broadcasting Signals using Compressed Sensing (압축 센싱을 이용한 3D 방송 신호 전송 시스템)

  • Lee, Sun Yui;Cha, Jae Sang;Park, Gooman;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.130-134
    • /
    • 2013
  • This paper describes the basic principles of 3D broadcast system and proposes new 3D broadcast technology that reduce the amount of data by applying CS(Compressed Sensing). Differences between Sampling theory and the CS technology concept was described. Recently proposed CS algorithm AMP(Approximate Message Passing) and CoSaMP(Compressive Sampling Matched Pursuit) was described. Image data that compressed and restored by these algorithm was compared. Calculation time of the algorithm having a low complexity is determined.

A Derivation of the Accuracy Relationship between the Reconstruction of 3D Object Coordinates and the Number of Closed Curves (폐곡선의 수에 따른 3차원 물체의 좌표 복원 정확도 관계 도출)

  • Lee, Deokwoo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.1004-1013
    • /
    • 2017
  • This paper presents a relationship between the number of curves and geometric parameters of a 3D object. Once the relationship is established, the number of closed curves that can reliably represent 3D object is derived. Inspired by Shannon-Nyquist Sampling Theorem, in this paper, approach for sampling rate (defined as the minimum number of curves) for 3D reconstruction is proposed. The relationship is straightforward, is suitable for application to 3D object overlaid with closed-continuous curves, and can achieve efficient 3D reconstruction system in practice. To substantiate the proposed approach, simulation results are provided and the results show that the number of curves can be decreased without loss of generality of characteristics of a target 3D object.

Sampling Techniques for Wireless Data Broadcast in Communication (통신에서의 무선 데이터 방송을 위한 샘플링 기법)

  • Lee, Sun Yui;Park, Gooman;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.57-61
    • /
    • 2015
  • This paper describes the basic principles of 3D broadcast system and proposes new 3D broadcast technology that reduces the amount of data by applying CS(Compressed Sensing). Differences between Sampling theory and the CS technology concept was described. CS algorithm SS-CoSaMP(Single-Space Compressive Sampling Matched Pursuit) and AMP(Approximate Message Passing) was described. Image data compressed and restored by these algorithm was compared. Calculation time of the algorithm having a low complexity is determined.

Double Sampling with Zero Acceptance Number for the First Sample

  • Bai, Do-Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 1977
  • A double sampling procedure with zero acceptance number for the first sample whose operating characteristic closely matches that of a given single sampling plan and whose combined sample size does not exceed that of the given single sampling plan is proposed. The proposed double sampling plans corresponding to the MIL-STD-105D plans are tabulated and it is found that their ASN's are considerably smaller than those of corresponding MIL-STD-105D single or double sampling plans.

  • PDF

Feasibility Study on Sampling Ocean Meteorological Data using Stratified Method (층화추출법에 의한 해양기상환경의 표본추출 타당성 연구)

  • Han, Song-I;Cho, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • The infrared signature of a ship is largely influenced by the ocean environment of the operating area, which has been known to cause large changes in the signature. As a result, the weather condition has to be clearly set for an analysis of the infrared signatures. It is necessary to analyze meteorological data for all the oceans where the ship is supposed to be operated. This is impossibly costly and time consuming because of the huge size of the data. Therefore, the creation of a standard environmental variable for an infrared signature research is necessary. In this study, we compared and analyzed sampling methods to represent ocean data close to the Korean peninsula. In order to perform this research, we collected ocean meteorological records from KMA (Korea Meteorological Administration), and sampled these in numerous ways considering five variables that are known to affect the infrared signature. Specifically, a simple random sampling method for all the data and 1-D, 2-D, and 3-D stratified sampling methods were compared and analyzed by considering the mean square errors for each method.

Real-time Localization of An UGV based on Uniform Arc Length Sampling of A 360 Degree Range Sensor (전방향 거리 센서의 균일 원호길이 샘플링을 이용한 무인 이동차량의 실시간 위치 추정)

  • Park, Soon-Yong;Choi, Sung-In
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.114-122
    • /
    • 2011
  • We propose an automatic localization technique based on Uniform Arc Length Sampling (UALS) of 360 degree range sensor data. The proposed method samples 3D points from dense a point-cloud which is acquired by the sensor, registers the sampled points to a digital surface model(DSM) in real-time, and determines the location of an Unmanned Ground Vehicle(UGV). To reduce the sampling and registration time of a sequence of dense range data, 3D range points are sampled uniformly in terms of ground sample distance. Using the proposed method, we can reduce the number of 3D points while maintaining their uniformity over range data. We compare the registration speed and accuracy of the proposed method with a conventional sample method. Through several experiments by changing the number of sampling points, we analyze the speed and accuracy of the proposed method.

Real-time Acquisition of Three Dimensional NMR Spectra by Non-uniform Sampling and Maximum Entropy Processing

  • Jee, Jun-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.2017-2022
    • /
    • 2008
  • Of the experiments to shorten NMR measuring time by sparse sampling, non-uniform sampling (NUS) is advantageous. NUS miminizes systematic errors which arise due to the lack of samplings by randomization. In this study, I report the real-time acquisition of 3D NMR data using NUS and maximum-entropy (MaxEnt) data processing. The real-time acquisition combined with NUS can reduce NMR measuring time much more. Compared with multidimensional decomposition (MDD) method, which was originally suggested by Jaravine and Orekhov (JACS 2006, 13421-13426), MaxEnt is faster at least several times and more suitable for the realtime acquisition. The designed sampling schedule of current study makes all the spectra during acquisition have the comparable resulting resolutions by MaxEnt. Therefore, one can judge the quality of spectra easily by examining the intensities of peaks. I report two cases of 3D experiments as examples with the simulated subdataset from experimental data. In both cases, the spectra having good qualitie for data analysis could be obtained only with 3% of original data. Its corresponding NMR measuring time was 8 minutes for 3D HNCO of ubiquitin.

Geometric analysis and anti-aliasing filter for stereoscopic 3D image scaling (스테레오 3D 영상 스케일링에 대한 기하학적 분석 및 anti-aliasing 필터)

  • Kim, Wook-Joong;Hur, Nam-Ho;Kim, Jin-Woong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.5
    • /
    • pp.638-649
    • /
    • 2009
  • Image resizing (or scaling) is one of the most essential issues for the success of visual service because image data has to be adapted to the variety of display features. For 2D imaging, the image scaling is generally accomplished by 2D image re-sampling (i.e., up-/down-sampling). However, when it comes to stereoscopic 3D images, 2D re-sampling methods are inadequate because additional consideration on the third dimension of depth is not incorporated. Practically, stereoscopic 3D image scaling is process with left/right images, not stereoscopic 3D image itself, because the left/right Images are only tangible data. In this paper, we analyze stereoscopic 3D image scaling from two aspects: geometrical deformation and frequency-domain aliasing. A number of 3D displays are available in the market and they have various screen dimensions. As we have more varieties of the displays, efficient stereoscopic 3D image scaling is becoming more emphasized. We present the recommendations for the 3D scaling from the geometric analysis and propose a disparity-adaptive filter for anti-aliasing which could occur during the image scaling process.

An Efficient Adaptive Sampling Technique based on the Kalman Filter for Sensor Monitoring (센서 모니터링을 위한 칼만필터 기반의 효율적인 적응적 샘플링 기법)

  • Kim, Min-Kee;Min, Jun-Ki
    • The KIPS Transactions:PartD
    • /
    • v.17D no.3
    • /
    • pp.185-192
    • /
    • 2010
  • In sensor network environments, each sensor measures the physical environments according to the sampling period, and transmits a sensor reading to the base station. Thus, the sample period influences against importance resources such as a network bandwidth, and a battery power. In this paper, we propose new adaptive sampling technique that adjusts the sampling period of a sensor with respect to the features of sensor readings. The proposed technique predicts a future readings based on KF (Kalman Filter). By using the differences of actual readings and estimated reading, we identify the importance of sensor readings, and then, we adjust the sampling period according to the importance. In our experiments, we demonstrate the effectiveness of our technique.