• Title/Summary/Keyword: 3D response surface

Search Result 295, Processing Time 0.03 seconds

Optimization of Extraction Process for Total Polyphenols from Angelica Using Response Surface Methodology (반응표면분석법을 이용한 안젤리카로부터 폴리페놀 성분의 추출공정 최적화)

  • Lee, Seung Bum;Park, Bo Ra;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.325-329
    • /
    • 2018
  • In this study, polyphenols were extracted from Angelica, which are known to have a high antioxidant content and the extraction process was optimized using the response surface methodology. The extraction yield and the total polyphenols were set as response values for the methodology. Quantitative factors in the extraction process were the extraction time, volume ratio of alcohol/ultrapure water, and extraction temperature. When considering both the main and interaction effects, the greatest influence factor on the extraction yield and total polyphenols was the extraction time. The optimum extraction time and temperature and alcohol/ultrapure water volume ratio for angelica were 2.8 h, $56.6^{\circ}C$ and 64.0 vol% respectively. The extraction yield and total polyphenols when using the conditions were calculated to be 24.6% and 8.76 mg GAE/g. respectively. Determination coefficients of regression equations for the extraction yield and total polyphenols were 81.4 and 75.4%, respectively. Also the overall satisfaction level was found to be 0.80 and the significance was confirmed within 5%.

Application of the Central Composite Design and Response Surface Methodology to the Treatment of Dye using Electrocoagulation/flotation Process (전기응집/부상 공정을 이용한 염료 처리에 중심합성설계와 반응표면분석법의 적용)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • This experimental design and response surface methodology (RSM) have been applied to the investigation of the electrocoagulation/flotation of dye wastewater. The electrocoagulation/flotation reactions were mathematically described as a function of parameters current (A), NaCl concentration (B), initial RhB concentration (C) and time (D) being modeled by use of the central composite design (CCD). The application of RSM using the CCD yielded the following regression equation, which is an empirical relationship between the RhB removal (%) and test variables in RhB removal (%) = $-300.42+129.21{\cdot}Current+46.99{\cdot}NaCl-0.11{\cdot}RhB-+43.71{\cdot}Time-5.67{\cdot}Current{\cdot}NaCl-3.18{\cdot}Current{\cdot}Time-2.41{\cdot}NaCl{\cdot}Time-19.79{\cdot}Current^2-2.27{\cdot}NaCl^2-1.59{\cdot}Time^2$. the model predictions agreed well with the experimentally observed result ($R^{2}=0.9728$). The estimated ridge of maximum response and optimal conditions for RhB removal (%) using canonical analysis was 99.4% (A: 1,77 A, NaCl concentration: 2.23 g/L, RhB concentration: 56.12 mg/L, Time: 9.98 min). To confirm this optimum condition, three additional experiments were performed and RhB removal (%) were within range of 86.87% (95% PI low)~111.93% (95% PI high) obtained.

A dynamic response Analysis of Tension Leg Platforms in Waves (II) (인장계류식 해양구조물의 동적응답해석(II))

  • 구자삼;박찬후;이창호
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.25-35
    • /
    • 1996
  • A numerical procedure is described for predicting the motion and structural responses of tension leg platforms(TLPs) in waves. The developed numerical approach is based on a combination of a three dimensional source distribution method and the dynamic response analysis method, in which the superstructure of TLPs is assumed to be flexible instead of rigid. Restoring forces by hydrostatic pressure on the submerged surface of a TLP have been accurately calculated by excluding the assumption of the slender body theory. The hydrodynamic interactions among TLP members, such as columns and pontoons, and the structural damping are included in the motion and structural analysis. The equations of motion of a whole structure are formulated using element-fixed coordinate systems which have the orgin at the nodes of the each hull element and move parallel to a space-fixed coordinate system. Numerical results are compared with the experimental and numerical ones, which are obtained in the literature, concerning the motion and structural responses of a TLP in waves. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Crack Propagation in Earth Embankment Subjected to Fault Movement (단층 운동시 댐 파괴 거동 해석)

  • 손익준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1988.06c
    • /
    • pp.3-67
    • /
    • 1988
  • Model studies on the response of homgeneous earth embankment dams subjected to strike-slip fault movement have been penomed via centrifuge and finite element analysis. The centrifuge model tests have shown that crack development in earth embankment experiences two major patters: shear failure deep inside the embankment and tension failure near the surface. The shear rupture zone develops from the base level and propagates upward continuously in the transverse direction but allows no open leakage chnnel. The open tensile cracks develop near the surface of the embankment, but they disappear deep in the embankment. The functional relationship has been developed based on the results of the centrifuge model tests incorporating tile variables of amount of fault movement, embankment geometry, and crack propagation extent in earth des. This set of information can be used as a guide line to evaluate a "transient" safety of the duaged embankment subjected to strike-slip fault movement. The finite element analysis has supplemented the additional expluations on crack development behavior identified from the results of the centrifuge model tests. The bounding surface time-independent plasticity soil model was employed in the numerical analysis. Due to the assumption of continuum in the current version of the 3-D FEM code, the prediction of the soil structure response beyond the failure condition was not quantitatively accurate. However, the fundamental mechanism of crack development was qualitatively evaluated based on the stress analysis for the deformed soil elements of the damaged earth embankment. The tensile failure zone is identified when the minor principal stress of the deformed soil elements less than zero. The shear failure zone is identified when the stress state of the deformed soil elements is at the point where the critical state line intersects the bounding surface.g surface.

  • PDF

The Optimization of Muffin with the Addition Dried Sweet Pumpkin Powder (단호박 가루를 첨가한 머핀제조 조건의 최적화)

  • Lee, Seon-Mi;Ju, Na-Mi
    • Journal of the Korean Dietetic Association
    • /
    • v.13 no.4
    • /
    • pp.368-378
    • /
    • 2007
  • This study was conducted to develop a optimal composite recipe of a functional muffin including Sweet pumpkin powder and to have the high preference to all age groups. Wheat flour was partically substituted by Sweet pumpkin powder to reduce the content of wheat flour. This study has produced the sensory optimal composite recipe by making muffin, respectively, with each 5 level of Sweet pumpkin powder($\X_1$), sugar($\X_2$), butter($\X_3$), by C.C.D(Central Composite Design) and conducting sensory evaluation and instrumental analysis by means of RSM(Response Surface Methodology). Sensory items showed very significant values in appearance, flavor, texture, overall quality(p<0.05), color(p<0.01), and instrumental analysis showed significant values in lightness, redness(p<0.01), yellowness(p<0.001), hardness, gumminess(p<0.05). Also sensory optimal ratio of Sweet pumpkin muffin was calculated as Sweet pumpkin powder 29.5g, sugar 72.6g, butter 79.3g, and it was revealed that the factors of influencing muffin aptitude were in order of Sweet pumpkin powder, butter, sugar.

  • PDF

Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System (스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측)

  • Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.43-53
    • /
    • 2022
  • In this study, analysis of the flow characteristics of pintle-controlled nozzle with split-line TVC system and the thrust performance prediction was performed. The numerical computation was verified by comparing the thrust coefficient derived from the analysis results with the experimental data. By applying the same numerical analysis technique, the flow characteristics of nozzle were confirmed according to operating altitude, pintle stroke position and TVC angle with the 1/10 scale. As the TVC angle increased, thrust loss occurred and the tendency of AF was different depending on the position of the pintle stroke. Based on the analysis results, the relation of thrust coefficient was derived by applying the response surface methods. The thrust performance model with a slight difference of 1.2% on average from the analysis result was generated.

3-D Vibration Modes of the Tire in Ground Contact and Its Effects on Wheel and Axle When Excited by a Vertical Impact at the Center of Contact Patch (접지면 중앙에서 수직방향 가진에 의한 타이어의 3차원 진동모드가 휠/축에 미치는 영향)

  • Kim, Yong-Woo;Nam, Jin-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2004
  • Tire vibration modes are known to play a key role in vehicle ride and comfort characteristics. Inputs to the tire such as impacts, rough road surface, tire nonuniformities, and tread patterns can potentially excite tire vibration. In this study, experimental modal analysis on the tire with ground contact are performed by impacting the tire in the radial direction at the center of contact patch. To investigate which modes of tire influence the vibration of wheel and axle when the tire is in contact with ground, the vibration characteristics such as frequency response functions, natural frequencies and their mode shapes from tire to wheel/axle are examined.

Optimum Design of Tunnel Actuator using Finite Element Method and Response Surface Method (유한요소법과 반응표면법을 이용한 터널액추에이터의 최적설계)

  • Ko, Hyoung-Hwan;Kim, Chang-Eob;Mun, Ho-Young;Kim, Houng-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.790-791
    • /
    • 2011
  • 본 논문에서는 기존의 리니어모터와 터널 액추에이터의 장단점을 비교하였다. 성능 향상을 위한 최적화 설계방법에 대한 연구 방법을 제시하고, 3D 유한요소법과 반응표면법을 이용하여 터널 액추에이터의 추력이 최대가 되는 최적설계를 하였다.

  • PDF

Optimal Design of Permanent Magnetic Actuator for Artificial Respirator (호흡기용 영구자석형 자기 액츄에이터의 최적설계)

  • Park, Sang-Min;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.59-61
    • /
    • 2007
  • This paper proposes optimized actuator to obtain a improved position control ability and respiratory performance with reduced weight. Respiratory organ uses actuator and controls patient's respiratory air volume. Therefore, actuator decides respiratory performance. Redesign actuator using surface response method. Actuator that is reestablished through 3D-simulations searches whether have suitable characteristic to respiratory organ.

  • PDF

Comparison of surface roughness effects upon the attachment of osteoblastic progenitor MC3T3-E1 cells and inflammatory RAW 264.7 cells to a titanium disc

  • Noh, Se-Ra;Im, Tae-Yoon;Lee, Eun-Young;Jang, Ha-Na;Dung, Tran D.;Kim, Myung-Soo;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • The attachment and adhesion of RAW 264.7 and MC3T3-E1 cells to titanium (Ti) discs with various degrees of roughness was investigated. The attachment, adhesion, and proliferation of these cells were evaluated after 4 hr, 24 hr and 7 day incubations. Both RAW 264.7 and MC3T3-E1 cells showed a time-dependant correlation between attachment and adhesion on the surface of the titanium discs. Both types of cells tended to have higher survival rate on these discs as the surface roughness increased. The percentage of adherent inflammatory RAW 264.7 cells was greater than MC3T3-E1 cells at 24 hr, but this was reversed at 7 days in culture. The morphology of osteoblastic MC3T3-E1 cells at 24 hr, determined using a surface emission microscope (SEM), appeared flattened and spread out while inflammatory RAW 264.7 cells were predominantly spherical in shape. The adhesion of both cell types on the titanium discs was dependant on the levels of fibronectin adsorbed on the disc surface, indicating that serum constituents modulate the efficient adhesion of these cells. Our data indicate that the cellular response to the titanium surface is dependent on the types of cells, surface roughness and serum constituents.