The aim in this paper is to show how to extract scalp of a series of brain MR images by using region growing segmentation algorithm. Most researches are all forces on the segmentation of skull, gray matter, white matter and CSF. Prior to the segmentation of these inner objects in brain, we segmented the scalp and the brain from the MR images. The scalp mask makes us to quickly exclude background pixels with intensities similar those of the skull, while the brain mask obtained from our brain surface. We make use of connected threshold method (CTM) and confidence connected method (CCM). Both of them are two implementations of region growing in Insight Toolkit (ITK). By using these two methods, the results are displayed contrast in the form of 2D and 3D scalp images.
Journal of International Society for Simulation Surgery
/
제1권2호
/
pp.75-79
/
2014
Purpose The region growing has a critical problem that it often extract vessels with unexpected objects such as a bone which has a similar intensity characteristics to the vessel. We propose the new method to extract arterial vascular anatomy around the stomach from the CTA volume without the post-processing. Materials and Methods Our method, which is also based on the region growing, requires the two seed points from the use. I automatically extracts perigastric arteries using the adaptive region growing method and it does not need any post-processing. Results The three region growing based methods are used to extract perigastric arteries - the conventional region growings with restrict and loose thresholds each and the proposed method. The 3D visualization from the result of our method shows our method extracted the all required arteries for gastric surgery. Conclusion By extracting perigastric arteries using the proposed method, over-segmentation problem that unexpected anatomical objects such as a rib or backbone are also segmented does not occurs anymore. The proposed method does not need to sensitively determine the thresholds of the similarity function. By visualizing the result, the preoperative simulation of arterial vascular anatomy around the stomach can be possible.
본 논문에서는 흉부 CT 영상의 밝기값 정보를 사용하여 폐 구조물을 자동 분할하기 위한 방법을 제안한다. 본 제안방법은 다음과 같은 다섯 단계로 구성된다. 첫 번째, 영상의 밝기값 차이를 이용하여 폐 구조물을 분할하기 위해 최적 임계값 기법을 사용하여 임계값을 계산한다. 두 번째, 흉부 CT 영상에 2차원 영역성장법의 역 연산을 사용하여 배경으로부터 흉부를, 흉부로부터 기관지 및 폐를 단계적으로 분할한다. 이 때, 밝기값이 비슷한 다른 영역들을 3차원 연결화소군 레이블링을 통해 제거한다. 세 번째, 흉부 CT 영상에 3차원 분기 기반 영역성장법을 적용하여 기관과 좌우 기관지를 분할한다. 네 번째, 기관지 및 폐에서 기관지를 영상 감산함으로써 정확한 폐 영역을 얻는다. 마지막으로, 히스토그램 분석을 통해 임계값을 계산하고 기관지 및 폐에 밝기값 기반 임계값 기법을 적용하여 폐혈관을 분할한다. 제안방법의 정확성을 검증하기 위해 폐, 기관지, 폐혈관의 분할 결과에 대해 육안평가를 수행한다. 제안한 3차원 분기 기반 영역성장법을 통한 기관지 분할 결과를 평가하기 위해 기존 영역성장법으로 분할한 결과와 비교한다. 실험 결과는 제안 분할 방법이 폐, 기관지, 폐혈관을 자동으로 정확하게 추출함을 보여준다.
This paper describes an automatic 3-dimensional (3D) segmentation method for 3D CT (Computed Tomography) images using region growing (RG) and edge detection techniques. Specifically, an augmented RG method in which the contours of regions are extracted by a 3D digital edge detection filter is presented. The feature of this method is the capability of preventing the leakage of regions which is a defect of conventional RG method. Experimental results applied to the extraction of teeth from 3D CT data of jaw bones show that teeth are correctly extracted by the proposed method.
본 논문에서는 인공고관절과 환자의 고관절 부위를 각각 3차원 영상화한 후에 이들의 정합도 (fitness)를 측정하여 수치적인 정보로 제공함으로써 환자의 체형에 적합한 인공고관절을 선택하고, 더 나아가 정확한 시술방향과 시술깊이를 제공할 수 있는 모의시술시스템을 제시하였다. 이를 위해 region growing 기법등을 이용하여 환자의 CT 영상을 3차원화하고, 또한 인공고관절을 projection 기법 등을 통해 3차원 영상화하였으며, 지금까지 인공고관절 정합도 측정에 사용했던 단순한 단면적 비교방식과는 달리 삽입의 균일성도 가늠할 수 있는 새로운 정합도 측정 방식을 고안하여 적용하였다. 다양한 실험과 분석을 통하여 새로 제안한 정합도 측정 방법의 정확성과 우수함을 확인할 수 있었으며, 본 논문에서 제시하는 모의 시술시스템은 향후 정형외과 분야에서 인공무릎과 같은 다른 영역에서의 시술 보조 시스템으로도 응용될 수 있을 뿐만 아니라, 인공관절의 국산화 및 주문제작 등에성도 많은 활용을 할 수 있을 것으로 기대된다.
향상된 기능을 가진 최신 의료장비들의 등장으로 하드웨어 성능에 부합하는 효과적인 영상처리 및 분석의 중요성이 부각되고 있으며, 2차원 의료 영상처리 및 3차원 영상 재구성에 관한 많은 연구들이 진행되고 있다. 본 논문은 흉부 CT 영상을 사용하여 신체 장기를 단계별로 분할 하였으며, 분할된 결과 영상을 3차원으로 재구성 하였다. 다양한 영상분할 방법중 영역 확장법 및 효과적인 분할을 위해 선명화와 감마 조절등과 같은 영상 향상 기법을 적용하였으며, 기관지를 포함한 폐, 기관지, 폐 등의 순서로 영상을 분할하였다. 분할된 신체 장기 영상을 VTK를 사용하여 3차원 영상으로 재구성 하였으며, 병변 진단을 위한 2차원 및 3차원 의료 영상 처리와 분석에 활용될 것으로 판단된다.
본 논문에서는, 입력으로 주어진 사람이 직접 분할한 1장의 슬라이스의 결과로부터 인접한 슬라이스들에 대해서 자동으로 원하는 장기를 추적하여 분할하는 반자동 분할 알고리즘을 제안한다. 일반적으로. 영역 확장에 기반한 추적 방법은 객체 투영. 초기 영역(seed) 추출, 그리고 영역확장에 의한 윤곽선 결정의 세 단계로 이루어진다. 이 때 의료 영상의 특성 상 장기들 사이의 경계가 모호한 경우 잘못 선택된 초기 영역은 최종 윤곽선이 장기 안쪽으로 파고 들거나 주변 영역으로 퍼져 나가는 결과를 만들 수 있다. 제안한 알고리즘에서는 영상의 특성을 이용하여 분할하려는 장기와 비슷한 밝기 값을 가지는 주변 장기와 붙어 있는 부분에서 주의 깊게 초기 영역을 선택해 줌으로써. 적절한 경계를 얻을 수 있으며, 경사도가 낮은 영역에서 깨끗한 윤곽선을 얻지 못하는 영역 확장 방법의 문제점의 해결을 위하여 Fourier descriptor를 사용한 후처리(post-Processing) 방법을 제안하였다. 또한, 양 방향 추적을 통해서 새로운 영역이 나타났을 때에도 놓치지 않고 찾아낼 수 있다. 본 논문에서 제안한 알고리즘을 1mm 간격의 82장의 X선 CT 영상에서 좌우측 신장 분할에 적용한 결과 만족할 만한 결과를 얻었다.
3차원 볼륨데이터에서 분할 대상영역의 밝기 값이 다양하면서 밝기 값이 유사한 영역과 인접한 경우 3차원 영역확장(region growing) 방법을 사용하여 영역을 분할하기 위해서는 영역확장의 중요한 요인인 동질성 기준 값의 적절한 선택이 요구된다. 본 논문에서는 영역 복셀(voxel)의 1차 미분 값의 크기인 기울기 크기(gradient magnitude)만으로 영역의 경계를 찾기가 쉽지않은 대상의 분할을 위해 볼륨데이터의 지역적인 밝기 값의 변화의 특징을 고려하면서 분할 대상영역의 복셀의 2차 미분(second partial derivation)을 행렬의 요소(element)로 갖는 Hessian 행렬의 고유치(eigenvalue)를 영역확장의 문턱치 결정에 이용하였다. 제안한 알고리즘은 3차원 영역확장의 결과에 가장 큰 영향을 미치는 적절한 문턱치의 선택으로 대상영역의 분할을 성공적으로 수행하여 3차원 영역확장의 단점을 보완하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권1호
/
pp.347-370
/
2019
In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive rate is common because the density and the computed tomography (CT) values of the vessel and the nodule in the CT images are similar, which affects the detection accuracy of pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules based on multi-scale enhancement filters and 3D shape features is proposed. The method uses an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types of multi-scale enhancement filters are constructed to enhance the images of nodules and blood vessels in 3D lung images, and most of the blood vessel images in the nodular images are removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, and the features of the suspected nodules are extracted. A support vector machine (SVM) classifier is used to classify the pulmonary nodules. The experimental results show that our method can effectively detect pulmonary nodules and reduce false positive rates, and the feature descriptor proposed in this paper is valid which can be used to distinguish between nodules and blood vessels.
의료 영상에서 관심 있는 부위를 3차원으로 재구성하여 보는 것은, 정확한 진단을 위해서 매우 중요하다. 이러한 3차원 재구성을 위해서는 관심 있는 영역의 분할이 필수적인 선행작업이다. 본 논문에서는 관도계 기관의 분할을 위해서 슬라이스 영상의 정보를 이용한 3차원 영역 성장법을 제안한다. 제안된 방법은 2차원 슬라이스 영상에서 영역 성장법에 의해 영역을 확장시키고, 그 이웃한 슬라이스들에 씨앗점을 전달하여 재귀적으로 3차원 체적을 확장하여 영상을 분할한다. 이때, 이웃한 슬라이스간의 영역의 크기의 제약을 이용하여 새나감을 방지한다. 제안된 방법을 기관지의 분할에 적용한 결과, 새나감 없이 뾰족한 가지들까지도 성공적으로 분할했으며, 튜브의 중심 축이 고차원 곡선인 경우에도 성공적으로 분할했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.