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Abstract 
 

In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive 
rate is common because the density and the computed tomography (CT) values of the vessel 
and the nodule in the CT images are similar, which affects the detection accuracy of 
pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules 
based on multi-scale enhancement filters and 3D shape features is proposed. The method uses 
an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types 
of multi-scale enhancement filters are constructed to enhance the images of nodules and blood 
vessels in 3D lung images, and most of the blood vessel images in the nodular images are 
removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is 
then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, 
and the features of the suspected nodules are extracted. A support vector machine (SVM) 
classifier is used to classify the pulmonary nodules. The experimental results show that our 
method can effectively detect pulmonary nodules and reduce false positive rates, and the 
feature descriptor proposed in this paper is valid  which can be used to distinguish between 
nodules and blood vessels. 
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1. Introduction 

Lung cancer has one of the highest mortality rates of cancer throughout the world [1]. Most 
lung cancers manifest as solitary pulmonary nodules (SPNs)  in the early stages, which are 
solitary, round, nodular lesions in the lung parenchyma with a maximum diameter of 30 mm. 
These lesions are not associated with lymph node enlargement, atelectasis, and pneumonia. 
Computed tomography (CT) has excellent density resolution for human lung lesions, and is 
the most effective and direct imaging method for the early diagnosis of lung cancer. With 
improvements in the imaging accuracy of the focus area, the thickness of the CT scan is 
decreasing, whereas CT image data is undergoing explosive growth. The massive amount of 
CT image data is increasing the workloads of doctors. Computer aided detection (CAD) 
systems can effectively reduce workloads and ensure the manual review of CT scans. 
However, a critical factor of the performance of lung cancer CAD systems is high false 
positive and low sensitivity, which will reduce the detection efficiency, and aggravate the 
burden on doctors. Therefore, a method for accurately detecting pulmonary nodules is 
significant for reducing the missing rates and false positive rates ensuring the early diagnosis 
and early treatment of lung cancer patients and improving their survival rates.  

A lung cancer CAD system usually contains the following processes: lung segmentation, 
nodules detection, feature extraction and classification. In recent years, numerous scholars 
have investigated the detection methods of a lung cancer CAD system. Han et al. proposed a 
CAD system [2] based on hierarchical vector quantization (VQ) to detect pulmonary nodules 
in the early stage of cancer. High-level VQ was used to segment the lungs from CT images and 
low-level VQ was employed to detect and segment the nodules. Rule-based filtering was 
performed to select features for training SVM classifiers. Tabakhi et al. proposed a feature 
selection approach using ant colony optimization (ACO) [3], in which a cosine similarity 
measure (CSM) served as the filter evaluation function. Features with high pheromone values 
and low similarity values in the partially constructed subsets were added to the subsets. In 
2012, Choi’s group applied 3D connected component labeling method to segment a lung body 
image and utilized an optimized multi-threshold and rule-based pruning technique to detect 
candidate nodules and extract their 2D and 3D features. The pulmonary nodules were 
classified by a genetic programming classifier (GPC), which can achieve a false positive rate 
of 5.45 and an accuracy of 94.1% [4]. In 2013, Choi’s group proposed a lung nodule detection 
method based on the theory of information entropy analysis [5]. They segmented a CT image 
into a three-dimensional image block and extracted the information entropy to segment 
suspected pulmonary nodules and employed a SVM to classify and identify nodule images. 
Compared with the previous experimental results, an accuracy of 95.28% and a false positive 
rate of 2.27 can be attained with this method. Stember [6] proposed a pseudo molecular motion 
model to measure the shape of an object. The model employs geometric characteristics to 
guide and visualize the internal motion of object and simulate and identify lung nodules. The 
experimental results revealed that the classification of round, oval and irregular graphics can 
achieve an accuracy rate of 97%. Ye X apply a fuzzy threshold to segment the lung and extract 
local shape features and partial dispersion information to describe pulmonary nodule images 
[7]. This method can detect solid nodules and ground glass nodules with an accuracy of 90.2% 
accuracy and a false positive rate of 8.2. Santos AM proposed a small nodule (diameter range 
of 2-10 mm) detection method that employs the Gauss mixture model [8]. The texture features 
measured by information entropy are extracted and the method can attain a classification 
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accuracy rate of 88.4% and a false positive rate of 1.17. 
Regarding the aspect of the feature description for pulmonary nodules, Lee et al. extracted 

global shape features, such as sphericity, compactness and narrow length of candidate nodules, 
to distinguish true and false positive nodules [9]. Based on a gray histogram, Messay et al. 
extracted the gray mean, variance, kurtosis and skewness as feature vectors for the 
classification of true and false positive nodules [10]. Skibbe H proposed a HOG operator 
based on the probability density function to detect 3D spherical objects [11]. Mikolajczyk K 
comparatively analyzed the advantages of a scale invariant feature transform (SIFT) and its 
variants to extract image features [12]. Zechao Li proposed a novel unsupervised feature 
selection algorithm by integrating cluster analysis and sparse structural analysis into a joint 
framework [13-15]. 

Although many scholars have researched pulmonary nodules detection, the accuracy and 
effectiveness of a detection system can not satisfy the clinical needs because the vascular 
density and CT values are similar to those of nodules and because the nodules and blood 
vessels usually cross within a lesion area. These conditions can cause false positives and low 
accuracy. Therefore, we consider the differences in the shapes and structures of nodules and 
vessels in 3D images and propose a method for automatic detection of pulmonary nodules 
based on multi-scale enhancement filters and 3D shape features. Compared with existing 
methods, this method can effectively reduce false positives in the detection of solitary 
pulmonary nodules and achieve high sensitivity, specificity and accuracy. 

2. Materials and methods 

2.1 Materials 
The sequence of the CT image data used in this paper is derived from the LIDC database. All 
data can be accessed at https://figshare.com/s/39ff2ec6469fdc354a6c. In the experiment, we 
selected data from 90 case, each case contains an average of 280 CT images, the thickness 
range for the CT layers is 0.5 mm-3.75 mm, and the image size is 512 * 512. The total number 
of nodules labeled by statistical experts is 165, and the diameter range is 3 mm-30 mm. The 
total number of suspected nodules detected by this method is 568. 

2.2 Proposed Method 
Our method primarily involves segmenting pulmonary parenchyma image sequences using a 
method of iterative threshold and a region growing algorithm. Two types of multi-scale 
enhancement filters are constructed for enhancing the 3D nodule images and vascular images 
and most of the blood vessel images in the nodular images are removed to obtain suspected 
nodule image. An 18-neighborhood region growing algorithm is used to extract lung nodules, 
and novel pulmonary nodule feature descriptors are proposed for classification by a SVM. A 
flow chart of the method is shown in Fig. 1. 
 

Lung CT 
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Lung Segmentation Nodules Detection

Enhancement Filtering

Nodules Extraction

Feature Extraction 
and Classification

Feature Extraction

Classification

Thresholding and 
ROI Extraction
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Fig. 1. Flow chart of lung nodules detection 

https://figshare.com/s/39ff2ec6469fdc354a6c
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2.2.1 Lung segmentation 
In the CADs of pulmonary nodules, accurate segmentation of lung parenchyma is critical to 
the detection and classification of pulmonary nodules. First, binarize the lung image sequences 
with the best threshold iteration method. Second, extract the region of interest (ROI) of pleural 
and segment lung parenchyma with the region growing algorithm. Last, modify the lung 
contour using morphological methods to obtain the final segmentation mask and lung 
parenchyma image sequences. The specific steps are given as follows: 

Step 1: Binarize for the lung image sequences.  
Step 2: Extract ROI and the minimum bounding rectangle of the lung. 
Step 3: Select seed points using the LRS and FCRS algorithm. 
Step 4: Refine the lung contours with erosion and dilation. 
Step 5: Acquire the final lung mask sequences. 

1. Binarization and ROI extraction 
In traditional medical image threshold segmentation, threshold selection is usually based on 
empirical values. Because the CT values of lung parenchyma and other tissues are similar, the 
selection of a fixed global threshold for image binarization is difficult. In this paper, we adopt 
an optimal iterative threshold algorithm to dynamically access the threshold. The steps are as 
follows: 

Step 1: Initialize the threshold value T0. 
Step 2: Classify the global image into two pixels set using T: the set B of body voxels and 

the set N of nonbody voxels.  
Step 3: Calculate the mean gray value μb of B and the mean gray value μn  of N. 
Step 4: Calculate the new threshold T according to Eq. (1) 

T = (μb + μn)/2      (1) 
Step 5: Repeat Step 2~4 until |Tn − Tn+1| is less than the preset parameter, where Tn represents 

the threshold at iteration n, and Tn+1 denotes the threshold at iteration n + 1. The threshold for the 
last iteration is Topt. 
 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)  
Fig. 2.  Segmentation of the lung parenchyma image 
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(a)-(c) are original lung images; (d)-(f) are the results of image binarization and ROI extraction; (g)-(i) 
are coarse segmented lung images; (j)-(l) are final lung parenchyma mask. 

In the CT image sequence, the CT value for the air is approximately -1000 Hounsfield units 
(HU). The CT value of most lung tissues ranges from -500HU to -910HU [16]. In this paper, 
-500HU is the initial threshold T0, and the optimal threshold Topt is obtained by the threshold 
iterative algorithm, for image binarization. Because the lung parenchyma region in the CT 
image of human lungs is relatively fixed in a CT image, that is, it has position relative 
invariance, this paper also extracts the lung chest ROI of the CT image, which can effectively 
reduce the time of image processing. The results of the image binarization and ROI extraction 
of the original lung CT image are shown in Fig. 2 (d)-(f). 

2. Lung image segmentation 
In lung CT image sequences, the morphological changes vary significantly from the top to the 
bottom of the lung. The image of the top of the lung usually contains the trachea, whereas the 
image of the bottom of the lung usually exhibits a four-part diagonal distribution. To address 
the particularity of the lung image, this paper adopts a region growing algorithm, which can 
realize the adaptive segmentation of the CT image of the top of the lung, the middle of the lung 
and the bottom of the lung. The segmentation steps are listed as follows: 

Step 1: Find the smallest circumscribed rectangle of the lung region in the chest ROI image. 
Step 2: Select seed points of the left and right lung parenchyma images. 

                LRS algorithm [17] is used for images of the top of the lung and the middle of the 
lung; 
    FCRS algorithm [17] is used for images of the bottom of the lung. 

Step 3: Use the improved regional growth method to segment the lung parenchyma images 
and remove the trachea and bronchi. 

Step 4: Optimize the lung parenchyma mask image using corrosion and dilation operations 
in the morphology. 

Step 5: Obtain image sequences of lung parenchyma. 
Using the LRS algorithm to find seed points of the top of the lung and the middle of the lung, 

the minimum circumscribed rectangular image is simultaneously scanned along the left and 
right sides of each pixel. When n continuous white pixels are observed along the Y direction, 
stop scanning, and establish the middle pixels are as seed points.  

The process of the FCRS algorithm is to seek the seed points of the bottom of the image as 
shown as Fig. 3. 

Set the four vertexes of the circumscribed rectangular as the base points, and set x = x1, y = 
y1, mid_x = (x1+x2)/2 and mid_y = (y1+y2)/2 as the boundary lines to radiate the rotating 
radiation. When the upper left corner region (x1, y1) is set as the rotation point, the equation of 
the rotating radiation in the upper left corner is formula (2): 

y-y1=tan(θ)(x-x1), θ∈[0, π/2) and x1<= x<= mid_x and y1<= y<=mid_y        (2) 
where θ gradually increases from 0. For each pixel in the area of the upper left corner, when n 
continuous white pixels are observed along the rotating radiation direction, stop scanning, and 
record the distance between the first pixel of n consecutive white pixels and the rotation point 
distance d(θ). The pixel points that correspond to the minimum d(θ), θ∈[0, π/ 2) are obtained 
as the lung parenchyma seed points of the upper left corner. If no points are eligible, no lung 
parenchyma seed point exists in this area. The method of scanning the lung parenchyma seed 
points in the upper right corner, lower left corner, and lower right corner is the same as the 
method of scanning in the upper left corner. 
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y-y1=tan(θ)(x-x1)     
θ∈[0, π/ 2)   

y-y1=tan(θ)(x-x2)     
θ∈(π/ 2,π ]  

y-y2=tan(θ)(x-x2)     
θ∈[π, π3/ 2)   

y-y2=tan(θ)(x-x1)     
θ∈(π3/ 2, 2π]   

mid_x

mid_y

(x1,y1) (x2,y1)

(x1,y2) (x2,y2)
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y

x

θ

θ

θ
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Fig. 3. Process of FCRS algorithm to seek the seed points of the bottom of the lung 

 
After the seed point of lung parenchyma is obtained, the regional growth method is used to 

segment the lung parenchyma image. The lung parenchyma mask is repaired by 
morphological operation, and the final lung parenchyma image is obtained using the mask to 
segment the original image. The results of pulmonary parenchyma segmentation using the 
regional growth method are shown in Fig. 2 (g)-(i). Remove the tracheal bronchus and 
optimize the mask to obtain the final lung parenchymal mask as shown in Fig. 2 (j)-(l). 

In addition, Fig. 4 gives the results of the 3D reconstruction of the lung parenchyma 
sequence images using the Visualization Toolkit (VTK). 

 

Front view  Rear view  Top view  
Fig. 4. Front view, rear view and top view of the 3D lung image 

2.2.2 Suspected nodules detection 
After obtaining lung parenchyma 3D image sequences, we need to detect suspected pulmonary 
nodules. Shape-based selective filtering has been extensively employed in pulmonary nodule 
detection system. In this paper, a method for the detection of suspected pulmonary nodules 
based on multi-scale enhancement of a Hessian matrix is proposed. The 3D models of 
pulmonary nodules and blood vessels are constructed. Two types of multi-scale enhancement 
filters based on 3D shapes using a Hessian matrix are constructed to enhance the spherical 
objects and cylindrical objects, which can enhance pulmonary nodule images and vascular 
images respectively. The enhancement of the lung nodule and blood vessel image at different 
scales is achieved using different values of σ in Gauss's functions. The blood vessel image is 
removed from the enhanced pulmonary nodule imagine. The 3D lung images of suspected 
pulmonary nodules are obtained. 

1. Nodule and vessel model 
In the 3D images of the lung, the nodules and blood vessels exhibit spherical and tubular 
characteristics, respectively, in the morphology, and the 3D images of the nodules and blood 
vessels can be considered a sphere and a cylinder, respectively. Thus, three ideal models are 
constructed in 3D space that represent a point, line, and plane [18]. The expression is shown in 
formula (3), and the ideal sphere model and cylinder model are shown in Fig. 5. 
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Dot Model  Line Model  
Fig. 5. Ideal sphere model and cylinder model 

 
Although realization of this ideal model in real images is difficult, we can obtain an 

approximate model by Gauss filtering of a certain size. The dot model can be understood as a 
sphere that consists of circles of different gray spherical surface. The gray value of the sphere 
decreases from the center to the surrounding area in the Gauss distribution. For the line model, 
which represents a cylindrical body, the gray value of each point in the cylindrical 
cross-section declines from the center to the surrounding area in the Gauss distribution. For the 
plane model,  which represents the thickness of the cross section, the gray values decreases 
from the center to the periphery in the Gauss distribution. The gray levels of these three 
models have diminishing characteristics, however,  their decreasing directions differ, Thus, 
their edges are relatively blurred, which is consistent with the edge features of the nodules and 
vessels. 

A Hessian matrix is a square matrix that comprises the second derivative of the multivariate 
function, which describes the local curvature of the function. A Hessian matrix is a method for 
extracting the image feature direction using a high- order differential [19]. In the ideal 
spherical model, the expression of the Hessian matrix H corresponds to every voxel V(x, y, z) 
(4). By calculation, H is a three order symmetric matrix, and the values of six mixed partial 
derivatives fxy , fxz , fyx , fyz , fzx , fzy are zero. The formulas for fxx , fyy , and fzz are  shown in (5). 

2
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In addition, each of the Hessian matrix can be decomposed by formula (6), where λ1, λ2, and 
λ3 are eigenvalues of the matrix, and|λ1| >= |λ2| >= |λ3|, the corresponding eigenvector are  e1, e2 
and e3, respectively. 
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Since the Hessian matrix in equation (4) is a diagonal matrix, the eigenvalues of this matrix 
are diagonal elements. The formula are shown in (7). The eigenvectors that correspond to the 
eigenvalues are pairwise orthogonal. The direction of the eigenvector corresponds to the main 
direction of the three-dimensional ellipsoidal axis, and the size of the eigenvalues corresponds 
to the length of each axis. Both the direction and the length reflect the shape of the object and 
the size of the object. The eigenvalues of the spherical model and the cylindrical model are 
shown in Fig. 6. 

2

1 2 2

2

2 2 2

2

3 2 2

(1 )

(1 )

(1 )

f x

f y

f z

λ
σ σ

λ
σ σ

λ
σ σ


= − −




= − −



= − −


           （7） 

λ1

λ3

λ2

e1

e3

e2

λ1λ2

λ3

(a) (b) (c)  
Fig. 6. Eigenvalues of the spherical model and the cylindrical model 

 
By formula (7) and Fig. 6, we find that the eigenvalues of the interior point within the object 

depend on the coordinate of the point, that is, the eigenvalues of a point are related to its 
distance from the point to the center of the object. We note that the distance of a point from the 
center is nearer, and the absolute values of eigenvalues are larger, when the point is the center 
of the sphere. The absolute values of the 3 eigenvalue values reach maximum and equal values, 
which are shown in formula (8). Similarly, the distance of a point from the center line of a 
cylinder is nearer, and the absolute values of eigenvalues are larger, when the point is on the 
center line. The absolute values of its 2 eigenvalues reach maximum and equal values, and the 
third eigenvalue is zero. 

1 2 3 2= fλ λ λ
σ

= = −         （8） 

For the different ideal models, the corresponding relations of their eigenvalues are 
summarized in Table 1. 

 
Table 1. The relationship of the eigenvalues for different ideal models 

dot line Plane 

1 2 3 0λ λ λ≈ ≈ <  1 2 30, 0λ λ λ≈ < ≈  1 2 30, 0λ λ λ< ≈ ≈  

2. Enhanced filter for nodules and vessels 
According to the eigenvalue characteristics of the Hessian matrix that corresponds to three 
different ideal models, Sato designed two enhancement functions to enhance the nodule image 
and vascular image. Sblob [20] and Sline [21] are defined as (9) and (10) respectively. 
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When the value of γ is 1, Sblob = |λ3|，Sline = |λ2|+|λ3|. 
A certain relationship between the eigenvalues and its coordinate values exists. 

Determining whether the point belongs to the nodules that only rely on λ3 is difficult. Based on 
the Sato’s method, Li designed the products magnitude and likelihood to enhance the nodule 
and vessel images [18]. The enhancement functions Zdot and Zline are defined as formula (11) 
and formula (12), respectively. 
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The experimental results indicate that the enhancement function proposed by Li is effective. 
However, we note that the eigenvalue λ2 does not play a role in the enhancement function in 
the formula (11). When the eigenvalues λ1 and λ3 of two points are equal in the image, the 
output of the enhancement filter is the same even if the eigenvalues λ2 differ..To  improve the 
filter effect, we consider the relationships among the eigenvalues and improve the 
enhancement function proposed by Li. The ratio of eigenvalues are the input of the 
enhancement function, and the new nodule and vessel enhancement functions are presented. 
We define function (13). 

22 2

22
( , ) ,

1

n
m n mm n m n

m n n
m

ℑ = = ≥
+

+

       （13） 

The values of the input (n/m) and output ( , )m nℑ of the function are [0, 1] and monotonically 
increasing. When the values of m and n are closer, the output of the function is larger, when the 
values of m and n are equal, the maximum output is 1. To consider the relationships of the 
eigenvalues, we define the new nodule enhancement function Eball as formula (14). 

1 2 2 3 1 2 3( , ) ( , ), ( )ballE λ λ λ λ λ λ λ= ℑ ×ℑ ≥ ≥      （14） 
The final nodule enhancement function Eball as formula (15) is obtained by simplification. 

3 1
1 2 3 1 2 3

2 2 23 32

1 2 1

4   ( , 0, 0, 0)
1 ( ( () )

 , 0

)
ballE

otherwise

λ λ
λ λ λ λ λ λ

λ λλ
λ λ λ
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   （15） 

Similarly, the new vessel enhancement function is define as formula (16). 
3 1 2 1 2 3exp( ) ( , ), ( )lineE λ λ λ λ λ λ= ×ℑ ≥ ≥          （16） 

The final vessel enhancement function Eline as formula (17) is obtained by simplification. 
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We use λ2/λ1 and λ3/λ2 as the coordinate input to draw the output curve of the nodule 
enhancement function Eball , as shown in Fig. 7. The curve indicates that λ2/λ1 and λ3/λ2 have 
the same contribution value to the value of Eball, and the range of Eball is [0, 1] and 
monotonically increasing. Therefore, the value of Eball of a voxel can express the possibility 
that the voxel belongs to the nodule. The greater the value of Eball is, the greater the possibility 
is that the voxel belongs to the nodule. Conversely, the smaller Eball is, the smaller the 
possibility of the nodule is. Thus, the nodule image can be enhanced by the enhancement 
function Eball.  

 
Fig. 7. Output curve of nodule enhancement function Eball 

 
Similarly, we use λ2/λ1 and λ3 as the coordinate input to construct the output curve of the 

vessel enhancement function Eline, as shown in Fig. 8. As shown in the curve, the Eline value 
monotonically increases at [0, 1]. Therefore, the Eline value of a voxel can express the 
possibility that the voxel belongs to the blood vessel. the greater the Eline value is, the greater 
the possibility is that the voxel belongs to the blood vessel; Conversely, the smaller the Eline 
value is, the smaller the possibility of the blood vessel is. Therefore, the image of the blood 
vessel can be enhanced by the enhancement function Eline. We note that the weights of the two 
inputs in the vascular enhancement function Eline, are not equal in their response, and hope to 
improve this  result in future studies. 

 
Fig. 8. Output curve of blood vessel enhancement function Eline 

3. Multi-scale computation of Gauss function 
In lung CT images, the size of nodules is uncertain, a substantial amount of image noise exists, 
and the computational process of the second-partial-derivative has a strong sensitivity to 
image noise. If an enhancement filter is directly applied to an image, poor results are likely. To 
effectively detect nodules of different sizes, a multi-scale filtering method based on a Gauss 
function is adopted in this paper. The Gauss function is used to simultaneously convolve the 
image, remove noise from the image and smooth the image, which enhances the image on 
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multi-scale[22-29]. 
For a Gaussian function with a standard deviation of σ, a minimum 95% area of the Gauss 

function is included in the range [-4σ, 4σ]. When designing the scale σ of the enhancement 
function, the σ of the function should be d/4 when the nodule diameter is d. Before the nodule 
is enhanced, the image should be convolved by the Gaussian function with the standard 
deviation σ, which not only eliminates the image noise but also improves the enhancement 
effect of the filter. 

Assume that the diameter of the object to be enhanced is [d0, d1], to enhance all objects in 
this range, the range of the Gauss filter can be set to [d0/4, d1/4]. Select N different σ values, 
and apply convolution operations on images to smooth. The larger N is, the higher the 
detection accuracy of nodules, and the complexity of the calculation are. The smaller N is, the 
lower the detection accuracy of nodules is and the simpler the calculation is. Therefore, the 
selection of N has a significant influence on the accuracy of the nodule detection results. In this 
paper, the diameter of the candidate nodules is [3mm, 30mm], and the number of scales N is 
five. When N is determined, the size of each scale is calculated as formula (18). 
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1 2 1 1

1
1 1
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4 4
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−

 = = = =
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The specific steps of using a multi-scale filter to detect suspected nodules are listed as 
follows: 

Step 1: Determine the range [d0, d1] of the object to be enhanced and the scale number N of 
the filter. Use formula (12) to calculate the size of each scale σN. 

Step 2: For each scale σN, execute Steps 3-6.  
Step 3: Smooth the image with Gauss filtering, and execute Steps 4-6 for each voxel. 
Step 4: Construct a Hessian matrix, compute the three eigenvalues λ1, λ2, and λ3, and use 

formulas (15) and (17) to calculate the nodule enhancement function Eball and the vessel 
enhancement function Eline , respectively, of each voxel respectively. 

Step 5: Nodule and vessel enhancement filter are used to enhance the voxels. 
Step 6: End the cycle for voxels and scales. 
Step 7: For each voxel, the final output is the maximum value computed at different scales, 

and the nodule enhancement image and the vessel enhanced image are obtained. 
Step 8: 3D Lung images of suspected pulmonary nodules are obtained by removing the 

overlapped part between the nodule image and the vessel image from the nodule image. 
Step 9: Output the final nodule detection result. 

2.2.3 Feature extraction and pulmonary-nodule classification 
In Section 2.2.2, nodules and a large number of vascular crossings have been enhanced. We 
observe that removing the overlap part from the nodule image can eliminate the blood vessels. 
However, some false positive nodules, such as vascular intersection points will remain. Many 
studies have demonstrated that the false positive nodules of a pulmonary dection system 
primarily include vessels, vascular cross and vascular bending, which is known as 
vascular-type false-positive nodules [30]. To improve the accuracy of pulmonary nodules 
detection, we need to examine feature extraction of suspected pulmonary nodules. 

In a CAD system, Feature extraction is the core problem of lung nodule detection and 
diagnosis, which determines the performance of subsequent classification [31]. An acceptable 
feature requires a certain degree of image translation, rotation, and scaling invariance. 
Therefore,  characteristics such as area, volume, diameter, roundness, sphericity, compactness 
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and global shape have been extensively applied to describe lung nodules and remove false 
positive nodules. In addition, feature factors based on a histogram have rotation, translation 
and scale invariance, which are important feature extraction techniques in image classification 
and computer vision. A histogram of oriented gradients (HOG) and scale invariant feature 
transformation (SIFT) are commonly used. 

To better describe the characteristics of pulmonary nodules, we propose the feature 
descriptors Surface normal orientation angles histogram (SNOAH) for lung nodules. First, 
use an 18- neighborhood 3D region growing method to extract all candidate nodules. Second, 
use a Hessian matrix to extract the surface normal vector histogram of each voxel for the final 
nodal classification. This method does not depend on the segmentation results of lung nodules 
and has a certain robustness. 

1. Nodules extraction 
In Section 2.2.2, the final output of each voxel is the maximum value of the enhancement 
function for all scales. The larger the value of the nodular enhancement function is, the greater 
the probability is that it will be attached to pulmonary nodules. Therefore, the coordinate of 
candidate nodules can be obtained by analyzing the value of the nodule enhancement function 
for voxel points. In addition, we use a 5-dimension feature vector [E, g, x, y, z]T for each voxel, 
where E represents the value of the nodule enhanced function Eball, g is the gray values, x, y are 
the point coordinates, and z is the CT serial number. The Euclidean distance between the 
eigenvectors of two voxels is used to measure the similarity among pixels. 

Region growing [32] is a classic image segmentation method. The algorithm can usually 
segment the connected region with the same features, and provide excellent boundary 
information and segmentation results. In this paper, we propose an18-neighborhood 3D region 
growing method for the extraction of each nodule image as shown in Fig. 9. First, the 
threshold TE is set. When the nodal enhancement function value Eball of the voxel is larger than 
the threshold TE, these voxels are selected as the nodule initial seed. Second, for all seed points, 
calculate the Euclidean distance D of the feature vectors between the 18 neighborhood voxels 
and the seed point. If D is less than the threshold Td, the voxel point will be expanded into the 
seed region as the seed point to a new cycle until the size of the seed region does not change. 
The specific steps to extract pulmonary nodules are listed as follows. 

Step 1: Set the threshold TE of the nodule enhancement function Eball, and obtain the voxel 
seed point set {Seed1, Seed2, …, Seedi}. 

Step 2: Extend the 18-neighborhood region of each seed point. 
Step 3: Calculate the Euclidean distance D between each voxel point in the 

18-neighborhood domain and the existing seed point. 
Step 4: If D < Td, the voxel will be included in the seed region and used as the new seed 

point. 
Step 5: Repeat Steps 2-4 until the size of the seed region does not changed. 
Step 6: Output detected 3D images of all suspected nodules. 
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L(x,y,z+1)

L(x,y,z)

L(x,y,z-1)

  
Fig. 9. 18-neighborhood 3D region growing method. The black point is the seed point and the white 

point is the 18-neighborhood point 

2. Surface normal orientation angles histogram 
The lung nodule feature descriptor Surface normal orientation angles histogram (SNOAH) 
can reflect the probability distribution of the normal vector direction angle of a pulmonary 
nodule surface. Fig. 10 shows the normal vector direction of each voxel surface of the nodules 
and vessels. The normal direction of the nodule is uniformly radial, without the main direction, 
whereas the normal direction of the blood vessel is consistent with the direction of blood flow 
in the blood vessel. Therefore, the nodule and vessel can be distinguished by the normal 
orientation distribution of voxels. In this paper, the SNOAH feature extraction procedure is  
described as follows. Input candidate voxel coordinates for solving eigenvalues and 
eigenvectors by Hessian matrix decomposition. Calculate the vector direction angle for each 
voxel, and perform a statistical analysis to obtain the voxel SNOAH. 

(a) (b)   
Fig. 10.  Normal vector direction of the nodule (a) and the vessel (b) 

 
Section 2.2.2 we obtain formula (6) by decomposing the Hessian matrix and obtain formula 

(19) from formula (6).  
2 31 2 3) )(( ) )((H λ λ λ λ λ= − + − +T T T T T T

1 1 1 1 2 2 1 1 2 2 3 3e e e e + e e e e + e e + e e             
    (19) 

where e1e1
T，e1e1

T + e2e2
T，e1e1

T + e2e2
T + e3e3

T represent the plane tensor, cylindrical tensor 
and spherical tensor, respectively. The coefficients λ1 - λ2, λ2 - λ3, and λ3 represent the 
corresponding weights. For these three types, three types of features expression are definded 
as local surface (surface-ness), curve (curve-ness) and local point or ball (point-ness). 

surface-ness：direction is the same with e1, weight is λ1 - λ2; 
curve-ness：direction is the same with e3, weight is λ2 - λ3; 
point-ness：no direction, weight is λ3. 
From the definition, we determine that the direction of surface-ness is the same for e1, which 

corresponds to λ1. Therefore, we can determine the direction of surface-ness by e1. In the 
space coordinate system, any point in space can be represented as (r, θ, φ), where r denotes the 
radius, θ denotes the elevation angle and φ is the azimuth angle, as shown in Fig. 11. θ and φ 
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can be calculated according to formula (20).  
(z)
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 =



=


        （20） 

where e1
(x), e1

(y), and e1
(z) represent the component in the x, y and z directions, respectively, of 

the  surface normal vector e1. The range of the elevation angle θ is [0,180], and the range of the 
azimuth angle φ is [0,360]. A two-dimensional statistical histogram is obtained by the 
statistics of the elevation angle θ and the azimuth φ. In the statistical surface normal vector 
elevation angle θ and the azimuth angle φ, θ and φ are equally divided into m parts. Each part 
of θ and φ covers an angle range of (180/m) degrees and (360/m) degrees, respectively, that is, 
the dimension of the final extracted feature vector is 2m. 
 

 
Fig. 11. Diagram of elevation angle θ and azimuth angle φ 

3. Support Vector Machine (SVM)-Based Classification 
A SVM is one of the best single classifiers for the diagnosis of benign and malignant 
pulmonary nodules, it has a significant effect on solving small samples, and high-dimensional 
and nonlinear data. In this paper, a sample set of N suspected pulmonary nodules is 
constructed as X = {(xi , yi)}, xi∈Rn，i = 1,2, …N, yi∈{1,-1}. The purpose of the SVM 
training sample is to minimize the error function, that is, to solve the optimization problem of 
formula (21). 
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where f(xi) is a decision function, and κ is a function mapping, that can map xi into a 
high-dimensional feature space. The purpose of a SVM is to obtain a hyper-plane (w, b) to 
satisfy the classification requirements, and extend the sample point distance from the plane as 
far as possible. C is a penalty factor that is greater than zero. 

Introducing the kernel mapping SVM can solve the linearly non-separable problem. In this 
manner, the linearly non-separable problem in the original sample space becomes linearly 
separable in a high-dimensional sample space. The kernel function is defined as K(xi , 
x) ≡ κ (xi)Tκ (x). In this paper, we use the polynomial kernel Kp(xi , x), the RBF kernel Kr(xi , x), 
and the mixed kernel Kmix(xi , x) as kernel functions, their formulas are shown as formula (22) , 
formula (23) and formula (24), respectively, where β is a mixed weighting factor. In addition, 
we use k-folding cross-validation to train and test the classifier. 

p( , ) || 1|| p i iK x x x x•= +                   （22） 
2

2 e || ||( ,
2

xp) i
r i

x xK x x
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 − −
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                 （23） 
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, ( , ) (1 ) (( ) , )i pi i r im x x x K x x K x xK β β+ −=    （24） 

3. Results 
The experimental platform of this algorithm is Visual Studio 2010 and MATLAB 2012b. The 
PC processor is Intel Core i7-3770, the main frequency is 3.40 GHz and the memory is 8 GB. 
We establish some necessary parameters to ensure the accuracy and effectiveness of our 
method. The values of these parameters are listed in Table 2. 
 

Table 2. Parameter values settings 
Index Parameters Values 

1 T0, θ, n 500Hu, 5°, 5 
2 d0, d1, N, σ1, σ2, σ3, σ4, σ5 3mm, 30mm, 5, 0.75mm, 1.33mm, 2.37mm, 4.21mm, 7.5mm 
3 TE, Td, m, C, P, σ, β 0.8, 0.25, 18, 1, 3, 2.5, 0.2 

3.1 Lung segmentation 
Using the adaptive iterative threshold and the region growing method, we segment all lung 
images sequences. Fig. 12 shows the processes of lung segmentation. Column (a) contain 5 
original lung images from the top to the bottom of the lung. The initial threshold T0 is set to 
500Hu, and the optimal threshold Topt is obtained by the iterative threshold method for lung 
image binaryzation. The binary images are shown in column (b). ROI images are extracted as 
shown in column (c). Lung parenchyma images are coarsely segmented using the region 
growing methods shown in column (d). We conduct trachea removal the results are listed in 
column (e). Morphological processing is used to generate lung parenchyma masks to separate 
lung parenchyma results, as shown in column (f) and column (g). 
 

Original Threshold ROI Lung coarse
segmentation

Trachea 
removing Mask Lung 

(a) (b) (c) (d) (e) (f) (g)  
Fig. 12.  Lung parenchyma segmentationin of CT image sequences 
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3.2 Suspected nodule detection  
The detection method proposed in our paper is used to detect suspected pulmonary nodules on 
lung images. First, two multi-scale enhancement filters are constructed to enhance similar 
spheres pulmonary nodule images and cylindrical vascular images. In this paper, the diameter 
of the nodule image to be enhanced ranges between 3 mm and 30 mm. We use 5 different  
filter scales, the size of each scale is 0.75mm, 1.33mm, 2.37mm, 4.21mm and 7.5mm, 
respectively. The detection results of the suspected pulmonary nodules for 2 cases are shown 
in Fig. 13 and Fig. 14. 
 

σ1=0.75 σ2=1.33 σ3=2.37 σ4=4.21 σ5=7.5          
Fig. 13. Comparison of image enhancement result for Data1 

 

σ1=0.75 σ2=1.33 σ3=2.37 σ4=4.21 σ5=7.5  
Fig. 14. Comparison of image enhancement result for Data2 

3.3 Feature extraction 
The SNOAH features extracted from the nodules, vessels and pleura are shown in Fig. 15, Fig. 
16 and Fig. 17, respectively. Figure (b) and (c) display the statistics histograms of elevation 
angle and azimuth angle. As shown in figure (c), the azimuth angles of nodules do not have a 
distinct main direction, they are evenly distributed from 0-360 degrees, they have a distinct 
main direction and they are centered at 180 and 360 degrees. Conversely, the azimuth angles 
of pleural are only distributed at several special angles. The feature descriptor SNOAH 
proposed in this paper can distinguish the shape of objects. We have performed angle 
histogram statistics for several types of special images. The result of the pleural traction image 
is shown in Fig. 18 and the vascular intersection image is shown in Fig. 19. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0
0.05
0.1

0.15
0.2

0.25
0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(c)

(b)

(a)  
Fig. 15. SNOAH features of nodules 
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(a)Nodule. (b) Elevation. (c) Azimuth 
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Fig. 16. SNOAH features of vessel 

(a)Vessel.(b) Elevation. (c) Azimuth 
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Fig. 17. SNOAH features of pleural 

(a)Pleural. (b) Elevation. (c) Azimuth 
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Fig. 18. SNOAH features of pleural traction 

(a) Pleural traction. (b) Elevation. (c) Azimuth 
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Fig. 19. SNOAH features of vascular intersection 

(a) Vascular intersection. (b) Elevation. (c) Azimuth 

3.4 Classification with SVM 
In our experiences, the polynomial kernel SVM_P, the radial basis kernel SVM_R and the 
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hybrid kernel SVM_M are used to classify the features of pulmonary nodules. Each classifier 
was trained and tested using K-fold cross-verification. The experimental results were 
compared by sensitivity (SE), specificity (SPE), accuracy (ACC) and receiver operating 
characteristic (ROC) curves. The formulations of SE, SPE and ACC are shown as (25), (26) 
and (27), respectively. 

TPSE
TP FN

=
+

                        （25） 

1 FPSPE
FP TN

= −
+

                     （26） 

TP TNACC
TP FP TN FN

+
=

+ + +
       （27） 

where TP, FN, FP and TN represent true positive, false negative, false positive and true 
negative, respectively. In addition, the experimental results of three classifiers with different k 
values are shown in Table 3, Table 4 and Table 5, and the corresponding ROC is shown in 
Fig. 20, Fig. 21 and Fig. 22, respectively. 
 

Table 3. k-foled cross-validation results for SVM_P-based nodule detection 
k values TP FN TN FP SE SPE FPs/case ACC AUC 

2 78 16 631 57 0.8298 0.9172 1.36 0.9066 0.9015 
3 76 18 627 61 0.8085 0.9113 1.45 0.8990 0.8452 
4 73 21 626 62 0.7766 0.9099 1.48 0.8938 0.8313 
5 72 22 6 53 0.7659 0.9230 1.26 0.9041 0.8876 
6 86 8 639 49 0.9149 0.9288 1.17 0.9271 0.9123 
7 70 24 627 61 0.7447 0.9113 1.45 0.8913 0.8375 
8 68 26 624 64 0.7234 0.9070 1.52 0.8849 0.8079 

 
Fig. 20. ROC curve of SVM_P 

 
Table 4. k-foled cross-validation results for SVM_R-based nodule detection 

k values TP FN TN FP SE SPE FPs/case ACC AUC 
2 88 6 636 52 0.9361 0.9244 1.24 0.9258 0.9181 
3 81 13 632 56 0.8617 0.9186 1.33 0.9118 0.8412 
4 79 15 633 55 0.8404 0.92 1.31 0.9105 0.8436 
5 86 8 640 48 0.9149 0.9302 1.14 0.9284 0.9056 
6 88 6 643 45 0.9361 0.9346 1.07 0.9348 0.9241 
7 78 16 627 61 0.8298 0.9113 1.45 0.9015 0.8875 
8 72 22 619 69 0.7660 0.8997 1.64 0.8836 0.8779 
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Fig. 21. ROC curve of SVM_R 

 

Table 5. k-foled cross-validation results for SVM_M-based nodule detection 
k values TP FN TN FP SE SPE FPs/case ACC AUC 

2 90 4 650 38 0.9563 0.9437 0.92 0.9361 0.9227 
3 84 10 630 58 0.8941 0.9159 1.33 0.920 0.8650 
4 84 10 632 56 0.8948 0.9175 1.33 0.9149 0.8697 
5 88 6 645 43 0.9358 0.9377 1.10 0.9369 0.9045 
6 91 3 652 36 0.9688 0.9467 0.93 0.9511 0.9467 
7 87 7 640 48 0.9245 0.9311 1.12 0.9300 0.8932 
8 87 7 639 49 0.9243 0.9289 1.20 0.9279 0.8886 

 
Fig. 22. ROC curve of SVM_M 

 
The best result for each classifier is shown in Table 6, where the value of k is 6. Table 6 

indicate that the SVM_M obtained the best classification performance with a sensitivity of 
96.88% and a false positive of 0.93, which outperformed the SVM_P and SVM_R. The 
classification sensitivities of SVM_P and SVM_R were also 91.49% and 93.61%, which 
verified the effectiveness of our features. 

 

Table 6. Best performance of each classifier, where the value of k is 6 
Methods TP FN TN FP SE SPE FPs/case ACC AUC 

Nodules candidates 94 0 0 688 1 0 16.38 -- -- 
SVM_P 86 8 639 49 0.9149 0.9288 1.17 0.9271 0.9123 
SVM_R 88 6 643 45 0.9361 0.9346 1.07 0.9348 0.9241 
SVM_M 91 3 652 36 0.9688 0.9467 0.93 0.9511 0.9468 
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Table 7 shows the comparison results between the existing CAD method and our method. 

The sensitivity of our method is 96.88%, which is lower than the sensitivity of 97.66% in one 
study [19] and the sensitivity of 100% in another study [42]. However, the false positive is 
0.93, which is lower than the sensitivity of other methods. Thus, our method can effectively 
reduce false positive results and maintain high detection sensitivity and accuracy. 

 
Table 7. Performance comparison of reported methods 

Methods Nodule size (mm) Sensitivity (%) Average FPs/case 
Ye et al. [7] 3–20 90.2 8.2 

Taghavi Namin[33] 2–20 88 10.3 
Messay et al. [10] 3–30 82.66 3 

Soltaninejad et al [34] – 90 5.63 
Suarez-Cuenca et al. [35] 4–27 80 7.7 

Golosio et al. [36] 3–30 79 4 
El-Baz et al. [37] ≥10 82.3 9.2 
Rubin et al. [38] ≥3 76 3 

Dehmeshki et al. [39] 3–20 90 14.6 
Santos et al. [8] 2–10 90.6 1.17 

Riccardi et al. [40] ≥3 71 6.5 
Suzuki et al. [41] 8–20 80.3 16.1 

Suiyuan and Junfeng [42] – 100 1 
Cascio et al. [19] 3–30 97.66 6.1 
Proposed Method 3–30 96.88 0.93 

4. Conclusion 
Our work indicates that the proposed method is more accurate with lower false positive rates 
than the rates of traditional methods. In our method, an adaptive threshold iteration method 
and region growing algorithm are used for segmentation of lung parenchyma image sequences. 
Nodular and vascular enhancement filters are used to enhance the nodular images and vascular 
images, respectively,  in the 3D lung. The blood vessel images in the enhanced pulmonary 
nodule images are removed, and the suspected nodular images are obtained, which 
significantly reduces the vascular type false-positive nodules. The SNOAH features of 
suspected pulmonary nodule images are extracted and classified by a SVM classifier with 
different kernel functions, which can remove the false positive nodules from suspected 
nodules by extracting effective features. We compare the results of our method with the results 
of existing CAD methods for detecting lung nodules. The experimental results indicate that the 
proposed method can achieve 0.9688 sensitivity and 0.9467 specificity. The accuracy of 
pulmonary nodule detection is 0.9511, and the average number of false positive nodules in 
each case is 0.93, which is significantly better than other detection methods. The results 
demonstrates that the proposed lung nodule feature descriptor SNOAH is effective for 
distinguishing nodules and blood vessels. 
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