• Title/Summary/Keyword: 3D printing test method

Search Result 72, Processing Time 0.03 seconds

Development of 3D Printed Bags Using Roll-Type Printing Method (롤(roll) 형태의 출력방식을 활용하는 3D 프린팅 가방 개발)

  • Lee, Jiwon;Chun, Jaehoon
    • Fashion & Textile Research Journal
    • /
    • v.24 no.5
    • /
    • pp.505-518
    • /
    • 2022
  • 3D printing technology, also known as additive manufacturing(AM), has not been actively used in the clothing industry despite its potential for economic, environmental, and labor efficiency. Therefore, this study aims to propose a new 3D printing method for the clothing industry, which will be more readily accessible. This roll-type printing method can print wide-sized patterns at once using a 3D modeling program and a FDM 3D printer and help overcome the limitations imposed by the size of the printer. Then, to demonstrate the practical application cases of this printing method, bags of three designs were developed. Prior to product development, a thickness test was performed for stable printing using TPU(Thermoplastic Poly Urethane) filament, and a thickness of 0.45 mm was found to be most suitable for it. Next, the time efficiency test showed that the roll-type printing method takes less time compared to the general printing method in printing wide-sized patterns. Based on these tests, three bags, , and , were developed to confirm the suitability of the roll-type printing method for product development. The advantages of 3D roll-type printing can lie in overcoming of the spatial limitation, and the environmental sustainability as it can reduce waste from the production process. This study is significant in that it presents a new 3D printing method to improve the space limitations and time inefficiency of 3D printers.

Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing (금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가)

  • Lee, Sung-Yun;Lee, In-Kyu;Jeong, Myeong-Sik;Lee, Jae-Wook;Lee, Seon-Bong;Lee, Sang-Kon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2017
  • In hot forming process, the dies in which excessive worn or crack occurs is reused after repair. Generally hot forming dies are recycled through a welding repair method. Welding repair methods are highly dependent on the skills of engineer. It causes process defects such as dimensional defects and structural defects. Recently, the metal 3D printing method has been applied to the repair of used dies. The aim of this study is to evaluate the wear characteristics of AISI H13 tool steel repaired by 3D printing method. Three kinds of wear specimens were fabricated by using 3D printing, welding, and initial material. A pin-on-disk wear test was carried out to evaluate the wear characteristics. From the result of wear test, the wear characteristics of 3D printing method was superior to that of the welded material, and was similar to that of the initial material.

Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method

  • Jeong, Yoo-Geum;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.245-251
    • /
    • 2018
  • PURPOSE. To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. MATERIALS AND METHODS. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). RESULTS. The RMS value ($152{\pm}52{\mu}m$) of the model manufactured by the milling method was significantly higher than the RMS value ($52{\pm}9{\mu}m$) of the model produced by the 3D printing method. CONCLUSION. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.

Design and Fabrication of Tool Change Multi-nozzle FDM 3D Printer (툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작)

  • Suk, Ik-hyun;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-44
    • /
    • 2021
  • To cater to the transition from single-color to multicolor/multi-material printing, this paper proposes a cartridge-replacing type multi-nozzle Fused Depositon Modeling(FDM) three-dimensional (3D) printer. In the test printing run, tool change failure/wobble/layer shift occurred. It was confirmed that improper support was the cause of this tool change failure. As a solution, spline and electromagnetic cartridges were designed. Wobble was caused by machine vibration and the motor stepping out. To minimize wobble, an additional Z-axis was installed, and the four-point bed leveling method was used instead of the three-point bed leveling method. The occurrence of layer shift was ascribed to the eccentricity of the Z-axis lead screw. Therefore, slit coupler was replaced with an Oldham type. In addition to the mechanical supplementation, the control environment was integrated to prevent accidents and signal errors due to wire connections. Before the final test printing run, a rectifier circuit was added to the motor to secure precise control stability. The final test printing run confirmed that the wobble/layer shift phenomenon was minimized, and the maximum error between layers was reduced to 0.05.

Study of the Mechanical Properties and Orthotropy of ABS Materials Fabricated by FDM Printing (FDM 프린팅으로 제작된 ABS 소재의 기계적 특성 및 직교이방성 연구)

  • Yoon, Juil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.143-148
    • /
    • 2018
  • 3D printing has been expanding beyond the bio/nano field to the automobile and aviation industries. 3D-printing technology has to overcome real problems to have economic value compared to its unlimited usability. Typically, the difference in mechanical strength along the lamination direction requires sufficient research to ensure reliability. In this paper, we study the anisotropic properties of ABS based on the stacking method of FDM 3D printing. Specifically, the mechanical properties of ABS material are determined through a tensile test and 3-point bending test, and the in-plane orthotropic properties are ascertained.

A Development of Work Item and Duration Estimation Method for 3D Printing based Building (건축물 3D 프린팅 공정 도출 및 공기 산정방식 개발)

  • Park, Hyung-Jin;Seo, Myoung-Bae;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.200-207
    • /
    • 2017
  • 3D printing is making a huge difference to existing industries and is beginning to be applied in the field of construction. 3D printing construction differs from existing construction techniques. Therefore, new construction processes need to be developed. In particular, the accurate construction duration is linked directly to a successful project. A method for estimating the construction duration for 3D printing construction is necessary. In this study, a 3D printing construction process and duration estimation method were derived to prepare for the future introduction of 3D printing in construction. The scope of the study was assumed to be 3D printing equipment capable of pouring concrete, and limited to a frame structure construction. The developed construction period estimation method was applied to the virtual test model. As a result of applying the test model, the construction duration was shortened by approximately 50% compared to the existing construction technique. The method of estimating the construction period developed in this study can be applied to 3D printing constructions in the future and help establish a business plan.

A Study on Tensile Strength of PLA+ and ABS Materials by 3D Printing Output Conditions (3D 프린팅 출력 조건에 따른 PLA+와 ABS 재료의 인장강도에 대한 연구)

  • Na, D.H.;Kim, S.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.284-290
    • /
    • 2021
  • Manufacturing using a 3D printer has recently increased in many fields and the material extrusion method, which is a lamination method, is commonly used. Since it uses a plastic material, the strength of the output of 3D printing is lower than that of steel material. For this reason, research on improving the mechanical properties of the output of 3D printing is continuously being conducted. In this study, tensile strength was compared with changes in the material type (PLA+, ABS) and density (60, 80, and 100%), layer height (0.1, 0.2, and 0.3 mm), layer direction (transverse and lengthwise), and fill pattern (zigzag, honeycomb, and concentric) among 3D printing output conditions. Tensile tests according to 3D printing output conditions were performed using a Universal Testing Machine. The results showed that tensile strength ranged from 21.10 MPa to 43.65 MPa according to the 3D printing output conditions.

Evaluation of Flexural Strength of 3D Printing Resin According to Post-Curing Equipment and Time (후경화기와 경화시간에 따른 3D 프린팅 레진의 굴곡강도 평가)

  • Hae-Bom Kim;Jae-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.629-637
    • /
    • 2023
  • This study aimed to evaluate the effect of post-curing equipment and time on the flexural strength of 3D printing resins produced by a liquid crystal display(LCD) printer. The three 3D printing resins(DENTCA Denture Teeth, DT; C&B 5.0 hybrid, CH; C&B Permanent A2, CP) were divided into four groups according to post-curing time(10 min and 30 min) and equipment with or without vacuum treatment. For the three-point flexural strength test and biaxial strength test were prepared by method according to ISO 10477, ISO 6872, respectively. Flexural strength was measured with universal testing machine. Comparison between post-curing time of each post-curing equipment was analyzed by independent sample t-test and Mann-Whitney U test(α=.05), and comparison between groups according to each 3D printing resin was performed by Kruskal-Wallis test and post-hoc by Bonferroni-Dunn test(α=.05). The flexural strength of the resin post-curing under vacuum was higher than that of the resin post-curing in air. In the comparison according to the post-curing time, in the case of the post-curing equipment without vacuum, the 30 minute curing time showed significantly higher flexural strength than the 10 minute curing time, except for the biaxial flexural strength of CH(P<.05). In the post-curing equipment with vacuum, the three-point flexural strength of all 3D printing resins(DT, CH, and CP) showed a higher value at 30 minute curing time than at 10 minute curing time.

A Study on Tensile Strength Considering Weight and Printing Time of 3D Infill Patterns using 3D Printing (3D 프린팅을 이용한 3차원 채움 패턴의 중량과 출력시간을 고려한 인장강도 연구)

  • D. H. Na;H. J. Kim;H. J. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.255-267
    • /
    • 2023
  • Recently, 3D printing using a material extrusion method is used in various fields. Since plastic material has lower strength than steel, research to increase the strength is continuously being conducted. This study investigates the lattice structure for additive manufacturing of six 3D infill patterns (octet, quarter cubic, cubic, cubic subdivision, triangles and cross 3D) which consist of tetragons, hexagonal trusses, equilateral triangles and cross shapes. Consequently, in the tensile strength considering the weight and printing time, octet, quarter cubic, cubic and triangles patterns tended to increase linearly as the infill density increased, except for the infill density of 20%. However, the tensile strength/weight performed better than the infill density of 100% when the cubic subdivision pattern had the infill density of 20% and the cross 3D pattern had the infill density of 40%. Considering the weight and printing time, the infill patterns of high tensile strength were octet, quarter cubic, cubic, cubic subdivision, triangles and cross 3D order.

A Study on Development of Three-Dimensional Chocolate Printer (초콜릿 소재의 3차원 프린터 개발에 관한 연구)

  • Kim, Kyu Eon;Park, Keun;Lee, Chibum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.293-298
    • /
    • 2017
  • In this study, we developed a 3D chocolate printer and studied the conditions needed for chocolate printing. Because chocolate is a mixture of cocoa mass, cocoa butter and sugar particles, its properties vary with temperature, and care is required in melting and extrusion. A chocolate supply unit is composed of a heating block and a syringe pump. It is integrated with a 3-axis linear robot. In order to be more accurate than the existing 3D chocolate printer is, the system was configured so that the printing line width became $430{\mu}m$. Printing performance was studied according to various parameters. The condition needed for printing lines with a stable width was discovered by the experimental design method and has been confirmed by a 2D line test. These 3D printing experiments showed that it was possible to build a 3D shape with an inclination angle of up to $45^{\circ}$ without support. Further, chocolate printing of a 3D shape has been successfully verified with the developed system.