• Title/Summary/Keyword: 3D posture

Search Result 238, Processing Time 0.028 seconds

Accuracy Analysis of 3D Posture Estimation Algorithm Using Humanoid Robot (휴머노이드 로봇을 이용한 3차원 자세 추정 알고리즘 정확도 분석)

  • Baek, Su-Jin;Kim, A-Hyeon;Jeong, Sang-Hyeon;Choi, Young-Lim;Kim, Jong-Wook
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.71-74
    • /
    • 2022
  • 본 논문은 최적화알고리즘을 이용한 관절각 기반 3차원 자세 추정 기법의 정확도를 휴머노이드 로봇을 이용하여 검증하는 방법을 제안한다. 구글의 자세 추정 오픈소스 패키지인 MPP(MediaPipe Pose)로 특정자세를 취한 휴머노이드 로봇의 관절 좌표를 카메라의 픽셀 좌표로 추출한다. 추출한 픽셀 좌표를 전역최적화 방법인 uDEAS(univariate Dynamic Encoding Algorithm for Searches)를 통해 시상면과 관상면에서의 각도를 추정하고 휴머노이드 로봇의 실제 관절 각도와 비교하여 알고리즘의 정확도를 검증하는 방법을 제시한다.

  • PDF

A study of the movement adaptability of classical opera costume - Focusing on 19th century women's jacket - (클래식 오페라 무대의상의 동작기능성 개선방안 연구 - 19세기 여성 재킷을 중심으로 -)

  • Kwon, Kyounghyun;Chun, Jongsuk
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.3
    • /
    • pp.301-314
    • /
    • 2017
  • This study focused on the movement adaptability of $19^{th}$ century classical opera stage costumes. Researchers focused on a basic $19^{th}$ century women's jacket. The study analyzed movement adaptability using ROM (range-of-motion) tests of the upper limb flexion and abduction postures. It developed two research garments to mimic basic $19^{th}$ century style jackets with or without gussets at the axilla. The ROM experiment identified the gusset size as 11cm in length. Experimental postures included upper limb flexion and abduction. The study measured subjective comfort at 8 postures. These postures included the flexion and abduction of the arms and torso. Subjects also evaluated the subjective comfort of the rotation posture of the torso. Researchers evaluated the similarities between research garments' silhouettes and the $19^{th}$ century women's jacket. The study used a 3D virtual fitting system to evaluate fit, and specialists further analyzed fit with photographs and 3D virtual graphics. The results are as follows. The silhouettes of both research garments were similar to the silhouettes of the $19^{th}$ century western women's jacket. The jacket with axilla gusset had a better fit than the basic style jacket. The basic style jacket without the axilla gusset showed limited movement adaptability at the shoulder joint and it caused discomfort at the axilla and elbow. The 3D virtual fit test was not a suitable method for analyzing silhouette similarity.

A New Calibration of 3D Point Cloud using 3D Skeleton (3D 스켈레톤을 이용한 3D 포인트 클라우드의 캘리브레이션)

  • Park, Byung-Seo;Kang, Ji-Won;Lee, Sol;Park, Jung-Tak;Choi, Jang-Hwan;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-257
    • /
    • 2021
  • This paper proposes a new technique for calibrating a multi-view RGB-D camera using a 3D (dimensional) skeleton. In order to calibrate a multi-view camera, consistent feature points are required. In addition, it is necessary to acquire accurate feature points in order to obtain a high-accuracy calibration result. We use the human skeleton as a feature point to calibrate a multi-view camera. The human skeleton can be easily obtained using state-of-the-art pose estimation algorithms. We propose an RGB-D-based calibration algorithm that uses the joint coordinates of the 3D skeleton obtained through the posture estimation algorithm as a feature point. Since the human body information captured by the multi-view camera may be incomplete, the skeleton predicted based on the image information acquired through it may be incomplete. After efficiently integrating a large number of incomplete skeletons into one skeleton, multi-view cameras can be calibrated by using the integrated skeleton to obtain a camera transformation matrix. In order to increase the accuracy of the calibration, multiple skeletons are used for optimization through temporal iterations. We demonstrate through experiments that a multi-view camera can be calibrated using a large number of incomplete skeletons.

The Effects of Activity and Family Support on the Participation Restriction of Chronic Stroke Patients (만성 뇌졸중 환자의 참여제한에 활동과 가족지지가 미치는 영향)

  • Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.19 no.1
    • /
    • pp.76-85
    • /
    • 2012
  • The purpose of this study was to identify the factors determining the participation restriction of chronic stroke patients based on international classification of functioning, disability, and health (ICF) model. Sixty-eight stroke patients participated. The participants were assessed participation restriction using the Korean version of London handicap scale (K-LHS), modified Barthel index (K-MBI) to measure activities of daily living, Berg balance scale (K-BBS) to assess balance, and the center for epidemiologic studies depression (K-CES-D) to gauge depression. Also, 3 minutes walking test (3MWT), gait velocity, asymmetric posture, and family support were assessed. A stepwise multiple regression analysis was used to explore the factors determining participation restriction. There were no significant different in the K-LHS and K-MBI results by gender (p>.05). Correlations between the K-LHS and K-MBI (r=-.656), K-BBS (r=-.543), K-CES-D (r=.266), 3MWT (r=-.363), gait velocity (r=.348), and family support (r=-.389) were significant (p<.05). Also, the K-MBI and family support were the factors that determined participation restriction (p<.05) and that 40.2% of the variation in the K-LHS can be explained. Therefore, it is suggested that evaluation and intervention of patient's activity level and extent of family support is necessary to reduce participation restriction of chronic stroke patients.

3-Dimension Lumbar Stabilization Exercise has an Influence on Pain of Degenerative Disc Disease Patients and the Spinal Stabilization muscle strength (3차원 척추 안정화 운동이 퇴행성 변성 디스크 환자의 통증과 척추 안정화 근력에 미치는 효과)

  • Kim, Seong-Ho;Kim, Myung-Joon
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.1
    • /
    • pp.29-38
    • /
    • 2006
  • The purpose of this study lies in finding out the effect that variation of pain and body deflection posture has an influence on the static spinal stabilization after having performed spinal stabilization exercise making degenerative disc disease patients an object over 8 weeks using $CENTAUR^{(R)}$, 3-D spinal stabilization training implement. Subjects : 61 of DDD patients were made as an object of this study (mean age: 45.46 years, SD: ${\pm}12.78$, range: 16-68), their average height was 161.87cm, average weight 60.70kg, 12 males and 49 females were involved. Methods: 8 various investigations were performed and varied values were compared with reinvestigation done after having exercised 8 weeks using 3-D $CENTAUR^{(R)}$. We used VAS(Visual Analog Scale) in order to see the variation of pain intensity, MOS(Modified Oswestry Scale) in order to see activities of daily life. Results VAS was lessened from 7.50 to 2.71, limitation of routine life(MOS) from 20.26 to 9.32, there were remarkable differences statistically(p<0.05). As a result of muscular investigation for static spinal stabilization by 8 variations of body deflection, muscular strength were all increased and there were remarkable differences statistically(p<0.05). Conclusions : It has been turned out that pain and limitation of daily life was lessened as a result of making 61 of degenerative disc disease patients exercised 8 weeks using $CENTAUR^{(R)}$, 3-D spinal stabilization training implement, deep muscular power was increased. Thus it has been turned out that 3-D lumbar stabilization exercise has an effect on the spinal muscles strengthening and alleviation of their pain for degenerative disc disease.

  • PDF

The kinematics analysis of Discus throwing (원반던지기의 운동학적 분석)

  • Kim, Jong-In;Sun, Jae-Bok
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.29-47
    • /
    • 2003
  • This study is to analyze the kinematic variables in release motion of discuss throwing. For the matter, 5 people from the national team and collegiate discuss throwing in the year 2001 were chosen as the subjects and two S-VHS video cameras set in 60frames/sec were used for recording their motions. Coordinated raw positions data through digitizing are smoothing by butter-worth 's low-pass filtering method at a cut off frequency 6.0Hz. and the direct linear transformation(DLT) method was employed to obtain 3-D position coordinates. The conclusions were as follows; 1. The better record players showed the shorter approach time in the last support phase. 2. In the displacement CG, the better record players showed the shorter displacement in medial-lateral direction, and the longer displacement in horizontal direction. In the motion, the COG showed longer displacement vertical direction. 3. The better record players showed the faster horizontal velocity than vertical velocity in the release. 4. The better record players showed to take the posture of vertical axis in the release.

Posture Recognition Method using 3D Space Data Feature (3차원 공간 데이터 특징을 이용한 포즈 인식 방법)

  • Xi, Yulong;Cho, Seoungjae;Um, Kyhyun;Cho, Kyungeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1696-1697
    • /
    • 2015
  • 최근 포즈 인식 기술의 연구는 HCI, 인공지능 등의 분야에서 활발히 진행되고 있다. 하지만 대부분의 연구는 센서와 사용 환경으로부터 많은 영향을 받는다. 본 논문에서는 이러한 종속성을 최소화하여 범용성 있는 포즈 인식 방법을 제안한다. 이 방법을 통해 사람의 다양한 포즈로부터 획득한 특징 데이터를 최적화함으로써 다양한 포즈를 실시간에 인식할 수 있다.

The Kinematic Analysis of the Last Stride landing and Release Phase in the Women Javelin (여자 창던지기 도움닫기 최종 1보 착지와 릴리즈 국면의 운동학적 분석)

  • Hong, Soon-Mo;Lee, Young-Sun;Kim, Tea-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.51-63
    • /
    • 2004
  • The purpose of this study was to investigate a three dimensional kinematic variables about the last stride and the release phase of the throwing technique for female javelin throwers. For the motion analysis, Six female javelin throwers were used as subjects. Three-dimensional coordinates were collected using the Kwon3D Motion Analysis Package Version 2.1 Program. Two S-VHS Video Cameras were used to record the locations and orientations of control object and the performances of the subjects at a frequency of 6.0 HZ. After the kinematic variables such as the time, the distance, the velocity, and the angle were analyzed about the last stride and release phase, the followings were achieved; 1. For the effectively javelin throwing, the subjects appeared to do long the approach time in the phasel of landing phase, and short the delivery time in release phase 2. In the release event, the other subjects except for subject A appeared to throwing in the lower condition than the height of themselves. This result showed to slow the projecion velocity. 3. For increase the projection vcelocity of the upper extremity joint in the release event, it appeared to do extend rather the shoulder angle than increase the extension of elbow joint. 4. The body of COG angle showed to gradually increase nearly at the vertical axis in the release event. But the front lean angle of trunk showed a small angle compare to increase of the body of COG angle. Therefore for the effectively momentum transmission of the whole body in the javelin, the front and back lean angle of trunk appeared to do fastly transfer the angle displacement in the arch posture or the crescent condition during the deliverly motion of the release phase.

The Effects of the Stirrup Length Fitted to the Rider's Lower Limb Length on the Riding Posture for Less Skilled Riders during Trot in Equestrian (승마 속보 시 미숙련자에게 적용한 하지장 비율 74.04% 등자길이 피팅의 기승자세 효과)

  • Hyun, Seung-Hyun;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.335-342
    • /
    • 2015
  • Objective : The purposes of this study was to analyze the effects of the stirrup length fitted to the rider's lower limb length and it's impact on less skilled riders during trot in equestrian events. Methods : Participants selected as subjects consisted of less skilled riders(n=5, mean age: $40.02{\pm}10.75yrs$, mean heights: $169.77{\pm}2.08cm$, mean body weights: $67.65{\pm}7.76kg$, lower limb lengths: $97.26{\pm}2.35cm$, mean horse heights: $164.00{\pm}5.74cm$ with 2 type of stirrups lengths(lower limb ratio 74.04%, and 79.18%) during trot. The variables analyzed consisted of the displacement for Y axis and Z axis(head, and center of mass[COM]) with asymmetric index, trunk front-rear angle(consistency index), lower limb joint(Right hip, knee, and ankle), and average vertical forces of horse rider during 1 stride in trot. The 4 camcorder(HDR-HC7/HDV 1080i, Spony Corp, Japan) was used to capture horse riding motion at a rate of 60 frames/sec. Raw data was collected from Kwon3D XP motion analysis package ver 4.0 program(Visol, Korea) during trot. Results : The movements and asymmetric index didn't show significant difference at head and COM, Also, 74.04% stirrups lengths in trunk tilting angle showed significant difference with higher consistency than that of 79.18% stirrups lengths. Hip and knee joint angle showed significant difference with more extended posture than that of 74.04% stirrups lengths during trot. Ankle angle of 79.18% stirrups length showed more plantarflexion than that of 74.04% stirrups lengths. Average vertical force of rider showed significant difference with higher force at 79.18% stirrups lengths than that of 74.04% stirrups lengths during stance phase. Conclusion : When considering the above, 74.04% stirrups length could be effective in impulse reduction with consistent posture in rather less skilled horse riders.

Example Development of Medical Equipment Applying Power Electronics Technique (전력전자 기술을 응용한 의료장비 개발 사례)

  • 고종선;이태훈;김영일;김규겸;박병림
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.524-530
    • /
    • 2002
  • A control of the body posture and movement is maintained by the vestibular system, vision, and proprioceptors. Afferent signals from those receptors are transmitted to the vestibular nuclear complex, and the efferent signals from the vestibular nuclear complex control the eye movement and skeletal muscle contract. The postural disturbance caused by loss of the vestibular function results in nausea, vomiting, vertigo and loss of craving for life. The purpose of this study is to develop a off-vertical rotatory system for evaluating the function of semicircular canals and otolith organs, selectively, and visual stimulation system for- stimulation with horizontal, vortical and 3D patterns. The Off-vortical axis rotator is composed of a comportable chair, a DC servo-motor with reducer and a tilting table controlled by PMSM. And a double feedback loop system containing a velocity feedback loop and a position feedback loop is applied to the servo controlled rotatory chair system. Horizontal, vertical, and 3D patterns of the visual stimulation for applying head mounted display are developed. And wireless portable systems for optokinetic stimulation and recording system of the eye movement is also constructed. The gain, phase, and symmetry is obtained from analysis of the eye movement induced by vestibular and visual stimulation. Detailed data were described.