• Title/Summary/Keyword: 3D motion analysis system

Search Result 297, Processing Time 0.029 seconds

3D Facial Landmark Tracking and Facial Expression Recognition

  • Medioni, Gerard;Choi, Jongmoo;Labeau, Matthieu;Leksut, Jatuporn Toy;Meng, Lingchao
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.207-215
    • /
    • 2013
  • In this paper, we address the challenging computer vision problem of obtaining a reliable facial expression analysis from a naturally interacting person. We propose a system that combines a 3D generic face model, 3D head tracking, and 2D tracker to track facial landmarks and recognize expressions. First, we extract facial landmarks from a neutral frontal face, and then we deform a 3D generic face to fit the input face. Next, we use our real-time 3D head tracking module to track a person's head in 3D and predict facial landmark positions in 2D using the projection from the updated 3D face model. Finally, we use tracked 2D landmarks to update the 3D landmarks. This integrated tracking loop enables efficient tracking of the non-rigid parts of a face in the presence of large 3D head motion. We conducted experiments for facial expression recognition using both framebased and sequence-based approaches. Our method provides a 75.9% recognition rate in 8 subjects with 7 key expressions. Our approach provides a considerable step forward toward new applications including human-computer interactions, behavioral science, robotics, and game applications.

Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results

  • Kim, Yong-Seok;Choi, Jung-In
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.239-255
    • /
    • 2017
  • Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5 Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.

Capture of Foot Motion for Real-time Virtual Wearing by Stereo Cameras (스테레오 카메라로부터 실시간 가상 착용을 위한 발동작 검출)

  • Jung, Da-Un;Yun, Yong-In;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1575-1591
    • /
    • 2008
  • In this paper, we propose a new method detecting foot motion capture in order to overlap in realtime foot's 3D virtual model from stereo cameras. In order to overlap foot's virtual model at the same position of the foot, a process of the foot's joint detection to regularly track the foot's joint motion is necessary, and accurate register both foot's virtual model and user's foot in complicated motion is most important problem in this technology. In this paper, we propose a dynamic registration using two types of marker groups. A plane information of the ground handles the relationship between foot's virtual model and user's foot and obtains foot's pose and location. Foot's rotation is predicted by two attached marker groups according to instep of center framework. Consequently, we had implemented our proposed system and estimated the accuracy of the proposed method using various experiments.

  • PDF

Three-dimensional finite element analysis of unilateral mastication in malocclusion cases using cone-beam computed tomography and a motion capture system

  • Yang, Hun-Mu;Cha, Jung-Yul;Hong, Ki-Seok;Park, Jong-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.2
    • /
    • pp.96-106
    • /
    • 2016
  • Purpose: Stress distribution and mandible distortion during lateral movements are known to be closely linked to bruxism, dental implant placement, and temporomandibular joint disorder. The present study was performed to determine stress distribution and distortion patterns of the mandible during lateral movements in Class I, II, and III relationships. Methods: Five Korean volunteers (one normal, two Class II, and two Class III occlusion cases) were selected. Finite element (FE) modeling was performed using information from cone-beam computed tomographic (CBCT) scans of the subjects' skulls, scanned images of dental casts, and incisor movement captured by an optical motion-capture system. Results: In the Class I and II cases, maximum stress load occurred at the condyle of the balancing side, but, in the Class III cases, the maximum stress was loaded on the condyle of the working side. Maximum distortion was observed on the menton at the midline in every case, regardless of loading force. The distortion was greatest in Class III cases and smallest in Class II cases. Conclusions: The stress distribution along and accompanying distortion of a mandible seems to be affected by the anteroposterior position of the mandible. Additionally, 3-D modeling of the craniofacial skeleton using CBCT and an optical laser scanner and reproduction of mandibular movement by way of the optical motion-capture technique used in this study are reliable techniques for investigating the masticatory system.

SPRAY CHARACTERISTICS OF DME IN CONDITIONS OF COMMON RAIL INJECTION SYSTEM(II)

  • Hwang, J.S.;Ha, J.S.;No, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.119-124
    • /
    • 2003
  • Dimethyl Ether (DME) is an excellent alternative fuel that provides lower particulate matter (PM) than diesel fuel under the same engine operating conditions. Spray characteristical of DME in common rail injection system were investigated within a constant volume chamber by using the particle motion analysis system. The injector used in this study has a single hole with the different orifice diameter of 0.2, 0.3 and 0.4 mm. The injection pressure was fixed at 35MPa and the ambient pressure was varied from 0.6 to 1.5 MPa. Spray characteristics such as spray angle, spray tip penetration and SMD (Sauter mean diameter) were measured. Spray angle was measured at 30d$_{0}$, downstream of the nozzle tip. The measured spray angie increased with increase in the ambient pressure. Increase of the ambient pressure results in a decrease of spray penetration. The experimental result, of spray penetration were compared with the predicted one by theoretical and empirical models. Increase in the ambient pressure and nozzle diameter results in an increase of SMD at a distance 30, 45 and 60d$_{0}$, downstream of the nozzle, respectively.ely.

The study for improve a method of Marker auto- identification (마커 자동 인식 향상 방법에 관한 연구)

  • Lee, Hyun-Seob
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.23-38
    • /
    • 2003
  • The purpose of this study is to develop an improved marker auto-identification algorithm for reduce of data processing time through improve the efficiency of noise elimination and marker separation. The maker auto-identification algorithm was programming named KUMAS used Delphi language. For the study, various experiments were conducted for the verification of KUMAS. and compared two systems of established with the KUMAS. Four different motions - cycling, gait, rotation, and pendulum -, were selected and tested. Motions were filmed 30Hz frames rate per second. ${\chi}^2$ used for statistical analysis. Significant level were ${\alpha}=.05$. The test results were as follow. 1. Increased the success ratio of marker auto-identification. 2. The efficiency of marker auto-identification was remarkably improved through marker separation, noise elimination. 3. The marker auto-identification ability was improved in 2D-image plane include the 3D motion. 4. Significant different were found between KUMAS and B-SYS(established system) with non-input the artificial noise frames, input the artificial noise frames and total frames.

Research and development of haptic simulator for Dental education using Virtual reality and User motion

  • Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.52-57
    • /
    • 2018
  • The purpose of this paper is to develop simulations that can be used for virtual education in dentistry. The virtual education to be developed will be developed with clinical training and actual case data of tooth extraction. This development goal is to allow dental students to learn the necessary surgical techniques at the point of their choice, not going into the operating room, away from time, space, and physical limits. I want to develop content using VR. Oculus Rift HMD, Optical Based Outside-in Tracking System, Oculus Touch Motion Controller, and Headset as Input / Output Device. In this configuration, the optimization method is applied convergent, and when the operation of the VR contents is performed, the content data is extracted from the interaction analysis formed in the VR engine, and the data is processed by the content algorithm. It also computes events and dental operations generated within the 3D engine programming and generates corresponding events through data processing according to the input signal. The visualization information is output to the HMD using the rendering information. In addition, the operating room environment was constructed by studying lighting and material for actual operating room environment. We applied the ratio of actual space to virtual space and the ratio between character and actual person to create a spatial composition at a similar rate to actual space.

The Shape Preferred Orientation (SPO) Analysis in Estimation of Fault Activity Study (단층 활동 추적 연구에서의 Shape Preferred Orientation (SPO) 분석법)

  • Ho Sim;Yungoo Song;Changyun Park;Jaewon Seo
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The Shape Preferred Orientation (SPO) method has been used to analyze the orientation of fault motion, which is utilized as basic data for fault kinematics studies. The rigid grains, which as quartz, feldspar, and rock fragments, in the fault gouge are arranged in the P-shear direction through rigid body rotation by a given shear stress. Using this characteristic, the fault motion can be estimated from the SPO inversely. Recently, a method for securing precision and reliability by measuring 3D-SPO using X-ray CT images and examining the shape of a large number of particles in a short time has been developed. As a result, the SPO method analyzes the orientation of thousands to tens of thousands of particles at high speed, suggests the direction of fault motion, and provides easy accessibility and reliable data. In addition, the shape information and orientation distribution data of particles, which are by-products obtained in the SPO analysis process, are expected to be used as basic data for conducting various studies such as the local deformation of fault rocks and the fault generation mechanism.

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

Construction of Virtual Environment for a Vehicle Simulator (자동차 시뮬레이터의 가상환경 구성에 대한 연구)

  • Chang, Chea-Won;Son, Kwon;Choi, Kyung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.158-168
    • /
    • 2000
  • Vehicle driving simulators can provide engineers with benefits on the development and modification of vehicle models. One of the most important factors to realistic simulations is the fidelity given by a motion system and a real-time visual image generation system. Virtual reality technology has been widely used to achieve high fidelity. In this paper the virtual environment including a visual system like a head-mounted display is developed for a vehicle driving simulator system by employing the virtual reality technique. virtual vehicle and environment models are constructed using the object-oriented analysis and design approach. Accordint to the object model a three dimensional graphic model is developed with CAD tools such as Rhino and Pro/E. For the real-time image generation the optimized IRIS Performer 3D graphics library is embedded with the multi-thread methodology. Compared with the single loop apprach the proposed methodology yields an acceptable image generation speed 20 frames/sec for the simulator.

  • PDF