DOI QR코드

DOI QR Code

The Shape Preferred Orientation (SPO) Analysis in Estimation of Fault Activity Study

단층 활동 추적 연구에서의 Shape Preferred Orientation (SPO) 분석법

  • Ho Sim (Department of Earth System Sciences, Yonsei University) ;
  • Yungoo Song (Department of Earth System Sciences, Yonsei University) ;
  • Changyun Park (Department of Geology, Kyungpook National University) ;
  • Jaewon Seo (Department of Earth System Sciences, Yonsei University)
  • 심호 (연세대학교 지구시스템과학과 ) ;
  • 송윤구 (연세대학교 지구시스템과학과 ) ;
  • 박창윤 (경북대학교 지질학과) ;
  • 서재원 (연세대학교 지구시스템과학과 )
  • Received : 2023.04.04
  • Accepted : 2023.05.11
  • Published : 2023.06.28

Abstract

The Shape Preferred Orientation (SPO) method has been used to analyze the orientation of fault motion, which is utilized as basic data for fault kinematics studies. The rigid grains, which as quartz, feldspar, and rock fragments, in the fault gouge are arranged in the P-shear direction through rigid body rotation by a given shear stress. Using this characteristic, the fault motion can be estimated from the SPO inversely. Recently, a method for securing precision and reliability by measuring 3D-SPO using X-ray CT images and examining the shape of a large number of particles in a short time has been developed. As a result, the SPO method analyzes the orientation of thousands to tens of thousands of particles at high speed, suggests the direction of fault motion, and provides easy accessibility and reliable data. In addition, the shape information and orientation distribution data of particles, which are by-products obtained in the SPO analysis process, are expected to be used as basic data for conducting various studies such as the local deformation of fault rocks and the fault generation mechanism.

Shape Preferred Orientation (SPO) 분석법은 단층의 운동학적 연구에 기초자료로 사용되는 단층면 운동 방향 분석을 위해 사용할 수 있는 방법으로 이용되어왔다. 단층비지 내 석영, 장석 등의 암편들로 이루어진 강성체들은 주어진 전단력에 의해 강성체 회전을 통해 P-전단 방향으로 배열되며, 이 특성을 이용해 역으로 SPO로부터 단층 운동 방향을 추정할 수 있다. 최근 X-선 CT 영상을 활용해 3D-SPO를 측정하여 빠른시간 내에 다수의 입자들의 형태를 조사함으로서 정밀도와 신뢰성을 확보하는 방법이 개발되었다. 이로서 SPO 분석법은 수천~수만개 이상의 입자들의 방향성을 빠른 속도로 분석하여 단층 운동 방향을 제시하며 용이한 접근성과 신뢰도 높은 데이터를 제공한다. 더불어 SPO 분석과정에서 획득되는 부산물인 입자들의 형태학적 정보와 방향성 분포 데이터는 단층 활동 당시 일어난 단층암의 국부적 변형, 단층 발생 메커니즘과 같은 다양한 연구를 진행할 수 있는 기초데이터로서 활용 할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 한국연구재단의 광화유체 진화의 미시적 해석: 마그마성-열수 광화작용의 새로운 이해 사업의 (NRF-2018R1D1A1B07051418)의 일환으로 수행되었음을 밝힙니다.

References

  1. Acton, G.D., Okada, M., Clement, B.M., Lund, S.P. and Williams, T. (2002) Paleomagnetic overprints in ocean sediment cores and their relationship to shear deformation caused by piston coring. J. Geophys. Res. Solid Earth, v.107(B4), p.EPM-3. doi: 10.1029/2001JB000518
  2. Arbaret, L., Mancktelow, N.S. and Burg, J.P. (2001) Effect of shape and orientation on rigid particle rotation and matrix deformation in simple shear flow. J. Struct. Geol., v.23(1), p.113-125. doi: 10.1016/S0191-8141(00)00067-5
  3. Barrett, P.J. (1980) The shape of rock particles, a critical review. Sedimentology, v.27(3), p.291-303. doi: 10.1111/j.1365-3091.1980.tb01179.x
  4. Cladouhos, T.T. (1999) Shape preferred orientation of survivor grains in fault gouge. J. Struct. Geol., v.21, p.419-436. doi: 10.1016/S0191-8141(98)00123-0
  5. Fleuty, M.J. (1975) Slickensides and slickenlines. Geological Magazine, v.112(3), p.319-322. doi: 10.1017/S0016756800047087
  6. Funato, A. and Ito, T. (2017) A new method of diametrical core deformation analysis for in-situ stress measurements. Int. J. Rock Mech. Min. Sci., v.91, p.112-118. doi: 10.1016/j.ijrmms.2016.11.002
  7. Gao, G., Li, Z. and Chang, C. (2022) Numerical simulation of diametrical core deformation and fracture induced by core drilling. Arab. J. Geosci., v.15(1), 59. doi: 10.1007/s12517-021-09378-0
  8. Keren, T.T. and Kirkpatrick, J.D. (2016) Data report: Tectonic and induced structures in the JFAST core. In Proc. IODP, v.343, no.343T, p.343T.
  9. Mair, K. and Abe, S. (2008) 3D numerical simulations of fault gouge evolution during shear: Grain size reduction and strain localization. EPSL, v.274(1-2), p.72-81. doi: 10.1016/j.epsl.2008.07.010
  10. Marques, F.O. and Coelho, S. (2003) 2-D shape preferred orientations of rigid particles in transtensional viscous flow. J. Struct. Geol., v.25(6), p.841-854. doi: 10.1016/S0191-8141(02)00089-5
  11. Masuda, T., Michibayashi, K. and Ohta, H. (1995) Shape preferred orientation of rigid particles in a viscous matrix: reevaluation to determine kinematic parameters of ductile deformation. J. Struct. Geol., v.17(1), p.115-129. doi: 10.1016/0191-8141(94)E0026-U
  12. Moore, D., Summers, R. and Byerlee, J. (1989) Sliding behavior and deformation textures of heated illite gouge. Journal of Structural Geology, v.11(3), p.329-342. doi: 10.1016/0191-8141(89)90072-2
  13. Nelson, E.P. (2006) Drill-hole design for dilational ore shoot targets in fault-fill veins. Economic Geology, v.101(5), p.1079-1085. doi: 10.2113/gsecongeo.101.5.1079
  14. Passhier, C.W. and Trouw, R.A.J. (2005) Microtectonics (Vol. 1): Springer. doi: 10.1007/3-540-29359-0
  15. Rutter, E.H., Maddock, R.H., Hall., S.H. and White, S.H. (1986) Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure Appl. Geophys., v.124, p.3-30. doi: 10.1007/BF00875717
  16. Saffer, D.M. and Marone, C. (2003) Comparison of smectite- and illite-rich gouge frictional properties: application to the updip limit of the seismogenic zone along subduction megathrusts. Earth Planet. Sci. Lett., v.215(1-2), p.219-235. doi: 10.1016/S0012-821X(03)00424-2
  17. Shelley, D. (1995) Asymmetric shape preferred orientations as shear-sense indicators. J. Struct. Geol., v.17, p.509-517. doi: 10.1016/0191-8141(94)00080-J
  18. Sills, D.W. (2010) The Fabric of Clasts, Veins and Foliations within the Actively Creeping Zones of the San Andreas Fault at SAFOD: Implications for Deformation Processes. Master's Thesis, University of Texas A&M, Texas, TX, USA.
  19. Sim, H., Song, Y., Kim, J., Yang, E., Yun, T.S. and Lim, J.H. (2020a) Measurement of 3d-shape preferred orientation (SPO) using synchrotron μ-CT: Applications for estimation of fault motion sense in a fault gouge. Minerals, v.10(6), p.528. doi: 10.3390/min10060528
  20. Sim, H., Song, Y., Hong, S. and Choi, S.J. (2020b) 3D Fabric Analysis in Fault Rock Using Synchrotron μ-CT: A Statistical Approach to SPO (Shape Preferred Orientation) for Estimation of Fault Motion. Minerals, v.10(11), p.994. doi: 10.3390/min10110994
  21. Simpson, C. and Schmid, S.M. (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Geological Society of America Bulletin, v.94(11), p.1281-1288. doi: 10.1130/0016-7606(1983)94%3C1281:AEOCTD%3E2.0.CO;2
  22. Thomas, A.L. and Pollard, D.D. (1993) The geometry of echelon fractures in rock: implications from laboratory and numerical experiments. J. Struct. Geol., v.15(3-5), p.323-334. doi: 10.1016/0191-8141(93)90129-X
  23. Tjia, H.D. (1964) Slickensides and fault movements. GSA Bulletin, v.75.7, p.683-686. doi: doi.org/10.1130/0016-7606(1964)75[683:SAFM]2.0.CO;2
  24. Vrolijk, P. and van der Pluijm, B.A. (1999) Clay gouge. J. Struct. Geol., v.21, p.1039-1048. doi: 10.1016/S0191-8141(99)00103-0
  25. Walter, J., Salsac, A.V. and Barthes-Biesel, D. (2011) Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes. J. Fluid Mech., v.676, p.318-347. doi: 10.1017/S0022112011000486
  26. Wegner, S., Stannarius, R., Boese, A., Rose, G., Szabo, B., Somfai, E. and Borzsonyi, T. (2014) Effects of grain shape on packing and dilatancy of sheared granular materials. Soft Matter, v.10(28), p.5157-5167. doi: 10.1039/C4SM00838C
  27. Wu, F.T. (1978) Mineralogy and physical nature of clay gouge. Pure Appl. Geophys., v.116, p.655-689. doi: 10.1007/BF00876531