• Title/Summary/Keyword: 3D motion analysis program

Search Result 99, Processing Time 0.026 seconds

Validation on the Application of Bluetooth-based Inertial Measurement Unit for Wireless Gait Analysis (무선 보행 분석을 위한 블루투스 기반 관성 측정 장치의 활용 타당성 분석)

  • Hwang, Soree;Sung, Joohwan;Park, Heesu;Han, Sungmin;Yoon, Inchan
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The purpose of this paper is to review the validation on the application of low frequency IMU(Inertial Measurement Unit) sensors by replacing high frequency motion analysis systems. Using an infrared-based 3D motion analysis system and IMU sensors (22 Hz) simultaneously, the gait cycle and knee flexion angle were measured. And the accuracy of each gait parameter was compared according to the statistical analysis method. The Bland-Altman plot analysis method was used to verify whether proper accuracy can be obtained when extracting gait parameters with low frequency sensors. As a result of the study, the use of the new gait assessment system was able to identify adequate accuracy in the measurement of cadence and stance phase. In addition, if the number of gait cycles is increased and the results of body anthropometric measurements are reflected in the gait analysis algorithm, is expected to improve accuracy in step length, walking speed, and range of motion measurements. The suggested gait assessment system is expected to make gait analysis more convenient. Furthermore, it will provide patients more accurate assessment and customized rehabilitation program through the quantitative data driven results.

Longitudinal Kinematical Analysis of Kip to Swallow Motion in Rings (링 운동 차오르며 Swallow 동작 처치 전.후의 기술분석)

  • Back, Jin-Ho;Park, Jong-Hoon;Lee, Yong-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.173-181
    • /
    • 2006
  • The purpose of this study is grasp the problem of the gymnast, Kim, Dong-Hwa's Kip to Swallow Motion in Rings, and make up for the weak points to help him to perform a better performance. Therefore, two tryouts for $28^{th}$ Athens Olympic Games were filmed using video camera then finalized with Kinematical Analysis using 3D motion analysis program followings are the form of conclusions. 1. In the very first tryout, when he was doing a Swallow Support Scale, his CM position was high and arm slope was deduction because when he was doing Kip, the ascent velocity was low and he tried excessively to pull him on rings due to relying upon angular movement of shoulder joint. 2. When he was doing drop, he let his hip angle bend only little bit and let fall so making shoulder angle wider and maintain the level horizontally occurs strong drop motion when vertical descent is happening. 3. As a result, lowering the direction of a kick makes CM's movement path lower, increase vertical ascent velocity, and it helps to do the Swallow Support motion in short period of time. 4. After a strong drop motion, which is deep and fast, would make rope of ring shake so there is a defect that the body moves to forward area. However, it does not effect in Swallow Support Scale motion. 5. In the second tryout, trunk rotation angle and arm slope was fixed decrease while doing rotary motion. When rotary motion was happening, before the body was going under the rings, maintained his arm slope horizontally so his Swallow Support Scale motion was nearly perfect.

A Study on The Comic Presentation Through Three-Dimensional Shot (입체적인 쇼트를 통한 코믹연출연구)

  • Hwang, Kil-Nam;Kim, Jae-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.91-99
    • /
    • 2008
  • When making a comic film, the comic presentation that uses stress and exaggeration is the important subject among other things. In this study we tried to investigate the comic effect using the movement of three-dimensional shot. To conduct this study, we extracted the shot manufactured through the Flow Motion of a 3D Production Program Virtual Camera and a High Speed Motion Picture Camera. The shot manufactured applying this manufacturing skill and using three-dimensional production method for the video contents efficiently made was classified into several scenes. The focus of this study is to search for the factor that makes the atmosphere of a story comic through three-dimensional production shot. According to the shot analysis, three-dimensional production method plays a role in developing more stories on space and time by visualizing stories in three dimensions, which makes the most use of the movement of camera, lens and the utilization of focus. In addition, in the presentation where many comic and exaggerated factors are provided, we used the technology that stresses a scene using the size of a shot and the lasting time and presented the method that exaggerates space using a 3D Production Program Virtual Camera and a High Speed Motion Picture Camera. By reviewing the qualitative improvement and the efficient method on making comic films through the possibility that the atmosphere of this three-dimensional shot can apply to the effect for comic presentation, we tried to approach the comic presentation.

Development of a Program That Computes the Position of the Club Face Based on the Experimental Data (실험 데이터를 이용한 클럽 페이스 움직임 분석 프로그램 개발)

  • Park, Jin;Shin, Ki-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.231-237
    • /
    • 2010
  • The moving trajectory of a golf ball is mainly determined by the angles of the clubface and the trajectory of the club shaft. This paper presents a computer program for analyzing the position and angles of the club while the club moves in a circular motion. For this purpose, a mathematical algorithm was developed and implemented on the experimental data(5 m and 10 m carries) using VC++ and OpenGL. A skilled female golfer(174 cm, 65 kg, 0 handicap) was participated in data collection for the short approach shots. An iron club(Titleist 52 degree, 91.5 cm length, 450 g mass), attached with five reflective markers(12 mm), was used to collect experimental data. However, exact 3D coordinates and angles of the clubface are not directly calculated from measured data. A reverse engineering platform(Minolta Vivid910 hardware and Rapidform software) was thus employed to acquire the scanned data of the clubface. The scanned data and measured data were first aligned by applying appropriate coordinate transformations, and then exact coordinates and angles of clubface could be obtained at each position during circular motion. The program(Club Motion Analysis 1.0) exports the open, heel, loft angles of the club.

Sloshing design load prediction of a membrane type LNG cargo containment system with two-row tank arrangement in offshore applications

  • Ryu, Min Cheol;Jung, Jun Hyung;Kim, Yong Soo;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.537-553
    • /
    • 2016
  • This paper addresses the safety of two-row tank design by performing the extensive sloshing model tests. Owing to the uncertainties entangled with the scale law transforming the measured impact pressure up to the full scale one, so called comparative approach was taken to derive the design sloshing load. The target design vessel was chosen as 230 K LNG-FPSO with tow-row tank arrangement and the reference vessel as 138 K conventional LNG carrier, which has past track record without any significant failure due to sloshing loads. Starting with the site-specific metocean data, ship motion analysis was carried out with 3D diffraction-radiation program, then the obtained ship motion data was used as 6DOF tank excitation for subsequent sloshing model test and analysis. The statistical analysis was carried out with obtained peak data and the long-term sloshing load was determined out of it. It was concluded that the normalized sloshing impact pressure on 230 K LNG-FPSO with two-row tank arrangement is higher than that of convectional LNG carrier, hence requires the use of reinforced cargo containment system for the sake of failure-free operation without filling limitation.

Kinematic analysis of professional golfers hip joint motion on the horizontal plane during driver swinging (골프 드라이브스윙 시 힙의 수평면상 움직임에 관한 운동학적 분석)

  • Park, Young-Hoon;Youm, Chang-Hong;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.97-104
    • /
    • 2005
  • Previous studies of kinematic analysis of golf swing usually dealt with variations vertically. The purpose of the study was to examine the horizontal hip joints motion of the fifteen male professional golfers during driver swinging. Kinematic variables were calculated by the Kwon3D motion analysis program. Paired t-tests and one-way ANOVA were used to compare the hip height, distance, displacement, and position differences. Results showed that there were no hip height changes and no hip height differences between left and right hip from address to impact. The axis of the backswing was braced right hip, the axis of the downswing was moving left hip. Hips position at the top of the backswing showed that hips move to target prior to hands, which means the sequential motion of the chain linked body segments. From address to impact, left hip moving distance was longer than right hip(p<.001), but during the whole swing, right hip moving distance was longer than left hip(p<.001). Hip rotation angle to target line was $-48.14{\pm}9.32^{\circ}$ at top of the backswing, $40.88{\pm}8.44^{\circ}$ at impact, and $104.70{\pm}8.14^{\circ}$ at finish.

A Study on the Development of the Automatic Drafting of Slacks Pattern for Elementary School Girls and the Evaluation of Fitness of Slacks Using 3D Scanner (3D Scanner를 활용한 학령후기 여아의 바지 원형자동제도 프로그램 개발 및 착의평가에 관한 연구)

  • Suk, Eun-Young;Kim, Hae-Kyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.59-79
    • /
    • 2002
  • The purposes of the study were to present the optimum slacks pattern for elementary school girls and to compare and evaluate wearing ease of the slacks. 3D scans using the Cyberware PS motion platform were carried out for 3 subjects who have different body type. The automatic drafting method was programmed by AutoLISP in CAD. Wearing tests using 3D Scanner was done for evaluation of fitness of slacks. Regression analysis, analysis of variance and post-hoc test were performed for statistical analysis of the data by SPSS program. The procedure and results were as follows: The slacks construction components for pattern drafting were derived from 10 horizontal section maps obtained from 3D scans. The automatic drafting was based on the measurements of slacks construction components and the curve of crotch line. The crotch line was drafted using of the arc function in AutoCAD. The total crotch length was calculated using the multiple regression equation. Wearing test represented that the slacks pattern developed to accomodate individual body measurements was estimated more highly than existing patterns.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Dynamic Characteristics Analysis of Closing Resistors of Gas Insulated Switchgear (가스절연 개폐장치 투입저항의 동특성 해석)

  • Cho Hae-Yong;Lee Sung-Ho;Lim Sung-Sam;Lee Ki-Joung;Kim Min-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.104-110
    • /
    • 2005
  • GIS(Gas Insulated Switchgear) is used in electric power system, to insure non conductivity, breaking capacity and operating reliability. The commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS were used to simulate dynamic analysis of the closing resistors of the GIS in this paper. To reduce chatter vibration of closing resistors, the motion of moving and fixed parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed parts. The simulated results were compared with experimental results. As a result, chatter vibration of closing resistors of the GIS could be reduced by using the results. These data can be used to determine the spring constant, the damping coefficient and mass of a moving part to reduce chatter vibration when the next model is developed.

Dynamic Analysis on the Closing Resistors of Gas Insulated Switchgear

  • Cho Hae-Yong;Lee Sung-Ho;Lim Sung-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1607-1613
    • /
    • 2006
  • GIS (Gas Insulated Switchgear) is used in electric power system to insure non conductivity, breaking capacity and operating reliability. In the present study, dynamic analysis on the closing resistors of the GIS has bees carried out by the commercial dynamic analysis code COSMOS MOTION and 3-D modeling program SOLID WORKS. In order to find the minimum value of chatter vibration of closing resistors, the motion of moving and fixed resistor parts of closing resistors were simulated by varying the spring constant, the damping coefficient and the mass of moving and fixed resistor parts. The simulated results were compared with experimental results. The application of the results could reduce chatter vibration of closing resistors of the GIS. These data are also useful on the development of future model GIS with minimum chatter vibration for the determinations of the spring constant, the damping coefficient and mass of a moving part.