• 제목/요약/키워드: 3D mold design

검색결과 151건 처리시간 0.027초

인공신경망을 통한 사출 성형조건의 최적화 예측 및 특성 선택에 관한 연구 (A study on the prediction of optimized injection molding conditions and the feature selection using the Artificial Neural Network(ANN))

  • 양동철;김종선
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.50-57
    • /
    • 2022
  • The qualities of the products produced by injection molding are strongly influenced by the process variables of the injection molding machine set by the engineer. It is very difficult to predict the qualities of the injection molded product considering the stochastic nature of the manufacturing process, since the processing conditions have a complex impact on the quality of the injection molded product. It is recognized that the artificial neural network(ANN) is capable of mapping the intricate relationship between the input and output variables very accurately, therefore, many studies are being conducted to predict the relationship between the results of the product and the process variables using ANN. However in the condition of a small number of data sets, the predicting performance and robustness of the ANN model could be reduced due to too many input variables. In the present study, the ANN model that predicts the length of the injection molded product for multiple combinations of process variables was developed. And the accuracy of each ANN model was compared for 8 process variables and 4 important process inputs that were determined by the feature selection. Based on the comparison, it was verified that the performance of the ANN model increased when only 4 important variables were applied.

22MnB5 / 탄소섬유 강화 플라스틱으로 제작된 단면 보강 하이브리드 적층판의 강도 보강에 관한 연구 (A study on strength reinforcement of one-sided reinforced hybrid laminates made of 22MnB5 and carbon fiber reinforced plastics)

  • 이환주;전용준;김동언
    • Design & Manufacturing
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2022
  • As environmental regulations are strengthened, automobile manufacturers continuously research lightweight structures based on carbon fiber reinforced plastic (CFRP). However, it is difficult to see the effect of strength reinforcement when using a single CFRP material. To improve this, a hybrid laminate in which CFRP is mixed with the existing body structural steel was proposed. In this paper, CFRP patch reinforcement is applied to each compression/tensile action surface of a 22MnB5 metal sheet, and it was evaluated through a 3-point bending experiment. Progressive failure was observed in similar deflection on bending deformation to each one-sided reinforced specimen. After progressive failure, the tensile reinforced specimen was confirmed to separate the damaged CFRP patch and 22MnB5 sheet from the center of the flexure. The compression reinforced specimen didn't separate that CFRP patch and 22MnB5, and the strength reinforcement behavior was confirmed. In the compression reinforced specimen, damaged CFRP patches were observed at the center of flexure during bending deformation. As a result of checking the specimen of the compression reinforcement specimen with an optical microscope, It is confirmed that the damaged CFRP patch and the reinforced CFRP patch overlapped, resulting in a concentrated load. Through the experimental results, the 22MnB5 strength reinforcement characteristics according to the reinforcement position of the CFRP patch were confirmed.

핫 프레스 포밍을 위한 고열전도성 금형에 대한 연구 (Tough High Thermal-Conductivity Tool Steel for Hot Press Forming)

  • 금종원;박옥조;홍석무
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.130-134
    • /
    • 2016
  • Due to the need for advanced technologies in the automotive industry, the demand for lighter and safer vehicles has increased. Even though various nonferrous metals, like Aluminum, Magnesium and also Carbon Fiber Reinforced Plastic (CFRP), have been implemented in the automotive industry, a lot of technical research and development is still focused on ferrous metals. In particular, the market volume of High Strength Steel (HSS) parts and Ultra High Strength Steel (UHSS) by hot press forming parts has expanded significantly in all countries' automotive industries. A new tool steel, High Thermal-Conductivity Tool Steel (HTCS), for stamping punches and dies has been developed and introduced by Rovalma Company (Spain), and it is able to support better productivity and quality during hot press forming. The HTCS punches and dies could help to reduce cycle time due to their high thermal conductivity, one of the major factors in hot press forming operation. In this study, test dies were manufactured in order to verify the high thermal conductivity of HTCS material compared to SKD6. In addition, thermal deformation was inspected after the heating and cooling process of hot press forming. After heating and cooling, the test dies were measured by a 3D scanner and compared with the original geometry. The results showed that the thermal deformation and distortion were very small even though the cooling time was reduced by 2 seconds.

주물 유동해석의 VR 가시화 (VR Visualization of Casting Flow Simulation)

  • 박지영;서지현;김성희;김명희
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.813-816
    • /
    • 2008
  • 본 연구에서는 주물의 유통해석결과를 3차원 모델로 복원하여 가상현실 디스플레이 상에 가시화 하는 방법을 제안한다. 먼저 기존 CAE 해석 소프트웨어를 사용하여 유한차분법 기반 열유동 수치해석을 수행한다. 이 과정에서는 주물의 설계모델은 그 형태가 규칙적인 사각형 격자에 근사되며 용탕을 주형에 주입하는 것을 시작으로 충전이 완료될 때까지 사전에 정의된 단계수만큼 반복적으로 전체 복셀에 대한 충전도와 온도수치가 기록된다. 다음 단계에서는 그 결과별 입력으로 하여 복셀 단위로 주울 형태를 복원한다. 이 때 유통진행에 따른 각 단계에서 각 복셀의 충전여부와 온도수치를 색상에 대응시켜 복셀의 색상을 결정한다. 복원 모델은 수평형 가상현실 디스플레이 장치인 Projection Table 상에서 가시화 하였으며 액티브 스테레오 방식으로 입체화면을 제공한다.

  • PDF

자동차 시트 쿠션 프레임 및 백 프레임의 구조 강도 해석 (Structural Strength Analysis at Cushion Frame and Back Frame of Automotive Seat)

  • 김성수;김기선;최두석;박상흡;김세환;조재웅
    • 한국산학기술학회논문지
    • /
    • 제13권11호
    • /
    • pp.4956-4962
    • /
    • 2012
  • 자동차의 다양한 부품 중 자동차 시트는 인간과의 직접 접촉 부위로서 승차감을 평가 할 수 있는 가장 기본적인 항목이다. 따라서 자동차 시트는 승차감과 동시에 충분한 강성과 강도를 가져야 할 것이다. 본 연구에서는 자동차 시트에서의 시트 쿠션 프레임과 백 프레임을 3D 모델링하였고, 쿠션 프레임의 비틀림 강도, 수직하중강도 시험, 백 프레임의 강도 시험 3가지 실험에 대해서 시뮬레이션으로 구조해석을 하였다. 해석결과, 쿠션 프레임 비틀림 강도 시험에서는 초기 전변형량의 최대값은 5.8421mm가 나왔고, 영구 전변형량의 최대값은 0.02539mm가 나왔다. 쿠션 프레임 수직하중강도 시험에서는 쿠션 프레임 앞쪽 끝단의 전변형량은 2.1159mm이고, 뒤쪽 끝단은 0.0606mm이다. 하중을 더 증가한 경우는 전변형량의 최대값은 3.1739mm가 나왔다. 3 가지의 백 프레임 강도 시험에서는 최대의 전변형량은 0.18634mm로 나타났다. 본 연구결과는 자동차 시트 쿠션 프레임 및 백프레임의 과도한 변형 및 파괴가 없음으로서 승객의 안전을 보장하는 충분한 강성과 강도를 검증할 수 있었다.

Effects of Storage Duration and Temperature on the Chemical Composition, Microorganism Density, and In vitro Rumen Fermentation of Wet Brewers Grains

  • Wang, B.;Luo, Y.;Myung, K.H.;Liu, J.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권6호
    • /
    • pp.832-840
    • /
    • 2014
  • This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures ($5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$) and four durations (0, 1, 2, and 3 d) were arranged in a $4{\times}4$ factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as $25^{\circ}C$ and $35^{\circ}C$. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds $35^{\circ}C$, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above $35^{\circ}C$ during summer.

냉간 금형용 공구강의 Cu 전극을 이용한 방전 홀에 관한 연구 (Electron Discharge Machining (EDM) and Hole EDM of Cold Heat-treated Tool Steel Molds (STD11) by using Cu Electrodes)

  • 박인수;이은주;김화정;왕덕현
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.76-82
    • /
    • 2018
  • 3D formed Electrical Discharge Machining (EDM) and hole EDM were conducted for die and mold manufacturing with electrodes which were made by mechanical machining and wire EDM. It is difficult to machine the hardened material after heat treatment and quenching with traditional machining. The only method of machining hardened material is die-sinking EDM. In this research, hole EDM was conducted for heat-treated cold-worked tool steel (SKD11) for use as a die material. The EDM surfaces were analyzed by pulse-on time and peak current of EDM current, according to the machining conditions of EDM. The EDM surface profiles were affected by the peak current. The contribution of each factor is peak current (91.63%) and pulse-on time (0.93%). The best surface roughness was obtained with a $130{\mu}s$ pulse-on time and a 14.2 A peak current. With uniform EDM processing, the surface deteriorated with increasing pulse-on time and peak current. The thickness of the solidified layer induced by EDM was increased as the peak current, crater shapes, and erupted shapes of EDM surfaces were increased. Therefore, microcracking gaps induced by surface tension were increased.

Digital Micromirror Device와 Polygon scanner의 Lithography 특성에 따른 산업적 분석 (Industrial analysis according to lithography characteristics of digital micromirror device and polygon scanner)

  • 김지훈;박규백;박정래;고강호;이정우;임동욱
    • Design & Manufacturing
    • /
    • 제15권4호
    • /
    • pp.65-71
    • /
    • 2021
  • In the early days of laser invention, it was simply used as a measuring tool, but as lasers became more common, they became an indispensable processing tool in the industry. Short-wavelength lasers are used to make patterns on wafers used in semiconductors depending on the wavelength, such as CO2 laser, YAG laser, green laser, and UV laser. At first, the hole of the PCB board mainly used for electronic parts was not thin and the hole size was large, so a mechanical drill was used. However, in order to realize product miniaturization and high integration, small hole processing lasers have become essential, and pattern exposure for small hole sizes has become essential. This paper intends to analyze the characteristics through patterns by exposing the PCB substrate through DMD and polygon scanner, which are different optical systems. Since the optical systems are different, the size of the patterns was made the same, and exposure was performed under the optimal conditions for each system. Pattern characteristics were analyzed through a 3D profiler. As a result of the analysis, there was no significant difference in line width between the two systems. However, it was confirmed that dmd had better pattern precision and polygon scanner had better productivity.

Sn 및 Cu를 첨가한 치과 주조용 Co-Cr-Mo계 합금제조 및 용해과정 분석 (Manufactures of dental casting Co-Cr-Mo based alloys in addition to Sn, Cu and analysis of infrared thermal image for melting process of its alloys)

  • 강후원;박영식;황인;이창호;허용;원용관
    • 대한치과기공학회지
    • /
    • 제36권3호
    • /
    • pp.141-147
    • /
    • 2014
  • Purpose: Dental casting #Gr I (Co-25Cr-5Mo-3Sn-1Mn-1Si), #Gr II (Co-25Cr-5Mo-5Cu-1Mn -1Si) and #Gr III (Co-25Cr-5Mo-3Sn-5Cu-1Mn-1Si) master alloys of granule type were manufactured the same as manufacturing processes for dental casting Ni-Cr and Co-Cr-Mo based alloys of ingot type. These alloys were analyzed melting processes with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer. Methods: These alloys were manufactured such as; alloy design, the first master alloy manufatured using vacuum arc casting machine, melting metal setting in crucible, melting in VIM, pouring in the mold of bar type, cutting the gate and runner bar and polishing. These alloys were put about 30g/charge in the ceramic crucible of high frequency induction centrifugal casting machine and heat, Infrared thermal image analyzer indicated alloys in the crucible were set and operated. Results: The melting temperatures of these alloys measuring infrared thermal image analyzer were decreased in comparison with remanium$^{(R)}$ GM 800+, vera PDI$^{TM}$, Biosil$^{(R)}$ f, WISIL$^{(R)}$ M type V, Ticonium 2000 alloys of ingot type and vera PDS$^{TM}$(Aabadent, USA), Regalloy alloys of shot type. Conclusion: Co-Cr-Mo based alloy in addition to Sn(#Gr I alloy) were decreased the melting temperature with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer.

한국의 과채류 재배 스마트 온실 실태: 온실 환경 및 병해충 관리 (Present Status of Smart Greenhouses Growing Fruit Vegetables in Korea: Focusing Management of Environmental Conditions and Pests in Greenhouses)

  • 박영균;백성훈;임재성;김민중;이준호
    • 한국응용곤충학회지
    • /
    • 제59권1호
    • /
    • pp.55-64
    • /
    • 2020
  • 스마트 온실은 주로 파프리카, 토마토, 딸기와 같은 과채류 작물을 대상으로 보급되었다. 스마트 온실의 보급량은 지속적으로 증가하고 있지만, 그 실태에 대한 조사는 부족하다. 그러므로, 이번 연구를 통해 한국의 스마트 온실의 시설 규모, 재배작물, 재배방법, 발생 병해충과 실사용자의 평가를 중심으로 한 현 실태를 파악하고자 하였다. 스마트 온실의 리스트는 각 권역별 현장지원센터로부터 제공받았으며, 모든 조사는 농가를 직접 방문하여 수행되었다. 조사된 스마트 온실 농가의 약 50%가 3,300 ㎡~6,600 ㎡ 사이의 규모로 운영하고 있었다. 조사된 농가 중 97.1%가 화학적 방법을 이용해 병해충을 방제하고 있었다. 조사된 농가에서 응답한 주요 식물병은 흰가루병과 잿빛곰팡이병으로 각각 54.4%, 33.8% 비율로 주로 문제가 되는 식물병이라고 응답하였다. 모든 토마토 농가에서 가루이류가 가장 문제가 되는 해충이라고 응답하였다. 그러나, 파프리카 농가의 76.5%, 70.6%가 총채벌레류와 진딧물류를 가장 문제가 된다고 응답하였다. 스마트 온실에 대한 사용자의 만족도는 10점 만점에 평균 7.5점이었다. 이 결과는 한국의 현재 스마트 온실을 관리하고 미래 스마트 온실을 설계하는 계획을 세우는 데 도움이 될 것이라 생각된다.