• Title/Summary/Keyword: 3D modeling and printing

Search Result 172, Processing Time 0.027 seconds

Study on Status of Utilizing 3D Printing in Fashion Field (패션분야의 3D 프린팅 활용 현황에 관한 연구)

  • Kim, Hyo-Sook;Kang, In-Ae
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.2
    • /
    • pp.125-143
    • /
    • 2015
  • This study has investigated the status of utilizing 3D printing in fashion field in order to keep up with the trend for 3D printing technology to be realized in all industries so that the materials and the modeling modes may be figured out. The following is the findings. The materials used most in 3D printing in fashion field are PA, PLA, TPU, multi-material, ABS and metal. PA, TPU and Multi-material have so much excellent flexibility and strength that they are widely used for garment, shoes and such fashion items as bags. But PLA, ABS and metal are scarcely used for garment because PLA is easily biodegradable in the air, ABS generates harmful gas in the process of manufacture and metal is not flexible, while all of these three are partly used for shoes and accessories. The modeling modes mainly applied for 3D printing in fashion field are SLS, SLA, FDM and Polyjet. SLS, which is of a powder-spraying method, is used for making 3D textile seen just like knitting. Polyjet method, which has higher accuracy and excellent flexibility, can be used for expressing diverse colors, and accordingly it is used a lot for high-quality garment, while SLA and FDM method are found to be mostly used for manufacturing shoes and accessories rather than for making garment because they are easily shrunk to result in deformation.

  • PDF

Application of Three-dimensional Scanning, Haptic Modeling, and Printing Technologies for Restoring Damaged Artifacts

  • Jo, Young Hoon;Hong, Seonghyuk
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.71-80
    • /
    • 2019
  • This study examined the applicability of digital technologies based on three-dimensional(3D) scanning, modeling, and printing to the restoration of damaged artifacts. First, 3D close-range scanning was utilized to make a high-resolution polygon mesh model of a roof-end tile with a missing part, and a 3D virtual restoration of the missing part was conducted using a haptic interface. Furthermore, the virtual restoration model was printed out with a 3D printer using the material extrusion method and a PLA filament. Then, the additive structure of the printed output with a scanning electron microscope was observed and its shape accuracy was analyzed through 3D deviation analysis. It was discovered that the 3D printing output of the missing part has high dimensional accuracy and layer thickness, thus fitting extremely well with the fracture surface of the original roof-end tile. The convergence of digital virtual restoration based on 3D scanning and 3D printing technology has helped in minimizing contact with the artifact and broadening the choice of restoration materials significantly. In the future, if the efficiency of the virtual restoration modeling process is improved and the material stability of the printed output for the purpose of restoration is sufficiently verified, the usability of 3D digital technologies in cultural heritage restoration will increase.

Convergence Education Modeling for Teaching Integration of IoT with 3D Printing Based on Manufacturing Chemical Product by Production Companies

  • Kim, Chigon;Park, Jong-Youel;Park, Dea-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.55-60
    • /
    • 2020
  • This study aims to apply Arduino and 3D printing technology considered as a key subject in the age of 4th industrial revolution which is a step 1 for customizing and applying the process of production by chemical molding companies producing environment-friendly biodegradable packaging materials to the 3D printing teaching in universities. Step 3 is applied to IoT for Arduino application, and 3D printing technology is also used on the basis of teaching creative integrated human resource. Integration of Arduino with 3D printers is based on the assumption that middle- and high-school students can learn it step by step to higher levels and university students majoring or not majoring in computing science can also have computing skills for solving 3D printing-based problems. For IoT application in this study, the 3D printing technology is applied to the external shape of products for producing an Arduino-based lighting fixture. The applied 3D printing technology is further extended to teaching modeling of producing packaging materials by chemical product molding companies in the age of 4th industrial revolution.

Cooling and Deformation Analysis of a Layered Road in a FDM Type 3D Printing Through Thermal-structural Coupled Simulation

  • Kim, S.L.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.216-223
    • /
    • 2017
  • The additive manufacturing technology, also called 3D printing, is growing fast. There are several methods for 3D printing. Fused deposition modeling (FDM) type 3D printing is the most popular method because it is simple and inexpensive. Moreover, it can be used for printing various thermoplastic materials. However, it contains the cooling of layered road and causes thermal shrinkage. Thermal shrinkage should be controlled to obtain high-quality products. In this study, temperature distribution and cooling behavior of a layered road with cooling are studied through computer simulation. The thermal shrinkage of the layered road was simulated using the calculated temperature distribution with time. Shape variation of the layered road was predicted as cooling proceeded. Stress between the bed and the layered road was also predicted.This stress was considered as the detaching stress of the layered road from the bed. The simulations were performed for various thermal conductivities and temperatures of the layered road, bed temperature, and chamber temperature of a 3D printer. The simulation results provide detailed information about the layered road for FDM type 3D printing under operational conditions.

Application of 3D Printing Technology in Seismic Physical Modeling (탄성파 축소모형 실험에서의 3D 프린팅 기술 활용)

  • Kim, Daechul;Shin, Sungryul;Chung, Wookeen;Shin, Changsoo;Lim, Kyoungmin
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.56 no.3
    • /
    • pp.260-269
    • /
    • 2019
  • The application of 3D printing technology in seismic physical modeling was investigated and the related domestic research was conducted. First, seven types of additive manufacturing methods were evaluated. In this report, to confirm the application of 3D printing technology, related studies in domestic and international journals of geophysics were searched and a comprehensive analysis was conducted according to year and the additive manufacturing type. The analysis showed that studies on 3D printing technology have been dominantly conducted since the 2010s, which corresponds to the time when 3D printers were commercialized. Moreover, 87% of the studies used the material extrusion additive manufacturing method, and the research was conducted in specific universities. This research can be used as basic data for application of 3D printing technology in geophysics.

Research On Solutions To Slicing Errors In FDM 3D Printing Of Thin-walled Structures

  • QINGYUAN ZHANG;Byung-Chun Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.176-181
    • /
    • 2024
  • The desktop-level 3D printing machines makes it easier for independent designers to produce collectible models. Desktop 3D printers that use FDM (Fused Deposition Modeling) technology usually use a minimum nozzle diameter of 0.4mm. When using FDM printers to make Gunpla models, Thin slice structures are prone to slicing errors, which lead to deformation of printed objects and reduction in structural strength. This paper aims to analyze the printing model that produces errors, control a single variable among the three variables of slice layer height, slice wall thickness and filament type for comparative testing, and find a way to avoid gaps. To provide assistance for using FDM printers to build models containing thin-walled structures.

Evaluation of Image Uniformity and Radiolucency for Computed Tomography Phantom Made of 3-Dimensional Printing of Fused Deposition Modeling Technology by Using Acrylonitrile Butadiene Styrene Resin (아크릴로나이트릴·뷰타다이엔·스타이렌 수지와 용융적층조형 방식의 3차원 프린팅 기술로 제작된 전산화단층영상장치 팬톰에서 영상 균일성 및 X선 투과성 평가)

  • Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.337-344
    • /
    • 2016
  • The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology.

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.

Development of Ergonomic Leg Guard for Baseball Catchers through 3D Modeling and Printing

  • Lee, Hyojeong;Eom, Ran-i;Lee, Yejin
    • Journal of Fashion Business
    • /
    • v.20 no.3
    • /
    • pp.17-29
    • /
    • 2016
  • To develop baseball catcher leg guards, 3-dimensional (3D) methodologies, which are 3D human body data, reverse engineering, modeling, and printing, optimized guard design for representative positions. Optimization was based on analysis of 3D body surface data and subjective evaluation using 3D printing products. Reverse engineering was used for analysis and modeling based on data in three postures: standing, $90^{\circ}$ knee flexion, and $120^{\circ}$ knee flexion. During knee flexion, vertical skin length increased, with the thigh and knee larger in anterior area compared to the horizontal dimension. Moreover, $120^{\circ}$ knee flexion posture had a high radius of curvature in knee movement. Therefore, guard designs were based on increasing rates of skin deformation and numerical values of radius of curvature. Guards were designed with 3-part zoning at the thigh, knee, and shin. Guards 1 and 2 had thigh and knee boundaries allowing vertical skin length deformation because the shape of thigh and knee significantly affects to its performance. Guard 2 was designed with a narrower thigh and wider knee area than guard 1. The guards were manufactured as full-scale products on a 3D printer. Both guards fit better in sitting than standing position, and guard 2 received better evaluations than guard 1. Additional modifications were made and an optimized version (guard 3) was tested. Guard 3 showed the best fit. A design approach based on 3D data effectively determines best fitting leg guards, and 3D printing technology can customize guard design through immediate feedback from a customer.

A Study on Educational Utilization of 3D Printing : Creative Design Model-based Class (3D 프린팅의 교육적 활용 방안 연구 : 창의적 디자인 모델 기반 수업)

  • Choi, Hyungshin;Yu, Miri
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • A recent increase of interests on the influence of 3D printing and low prices of 3D printers makes a high possibility of 3D printer adoption as a educational equipment in public education settings. The Ministry of Science, ICT and Future Planning and Ministry of Trade, Industry and Energy proposed '3D printing industry development strategies', and had pilot schools to include understanding of 3D printing concepts and practices in the primary, secondary and high schools' curriculum. However, even if 3D printers were provided in educational settings, the research on educational content and methods to properly react to this change is very limited. Therefore, this study reviewed various 3D modeling software because a modeling skill is a prerequisite skill to use 3D printers, and proposed a creative design spiral based teaching content that can be incorporated in elementary school contexts.