• 제목/요약/키워드: 3D micro-structure

검색결과 226건 처리시간 0.028초

토마토 'Micro-Tom' 과실의 eugenol synthase 유전자 클로닝, 단백질의 3차 구조 및 생리화학적 특성 예측 (Molecular Cloning of cDNA Encoding a Putative Eugenol Synthase in Tomato (Solanum lycopersicum 'Micro-Tom') and Prediction of 3D Structure and Physiochemical Properties)

  • 강승원;서상규;이태호;이긍표
    • 농업생명과학연구
    • /
    • 제46권4호
    • /
    • pp.9-20
    • /
    • 2012
  • Eugenol은 많은 식물에서 eugenol synthase에 의해 생합성되는 phenylpropene 계통의 휘발성 화합물이다. 그러나, 토마토 과실에서의 특징은 밝혀져 있지 않다. 이에 따라 토마토 'Micro-Tom'으로부터 RACE 기법을 이용하여 완전장 cDNA를 클로닝 하여, SlEGS라 명명하였다. SlEGS의 open reading frame은 921bp로, 307개의 아미노산 서열을 갖는 단백질로 번역되었다. BLAST 결과에 따라 SlEGS는 PhEGS1 및 CbEGS2와 각 67.1, 69.4%의 높은 상동성을 갖는 것으로 나타났다. CLC genomics workbench 프로그램을 이용하여 SlEGS의 아미노산 구성을 분석하였고, Swiss-PDB viewer 프로그램에서 homology modeling 기법으로 SlEGS의 3차원 단백질 구조를 구축한 후 ProSA-web 툴로 3차원 구조의 안정성을 확인 하였다. 또한 ExPASy의 ProtParam 툴을 이용하여 SlEGS의 생리화학적 특성을 분석 하였다. SlEGS의 추정 분자량은 33.93kDA이고 등전점(pI)은 5.85로 산성인 것으로 나타났다. 이와 더불어 SlEGS의 흡광 계수(EC), 불안정성 지수(II), alipathic 지수(AI), GRAVY값 등의 생리화학적 특성에 대한 분석을 실시 하였다.

Micro-pulling down법으로 성장시킨 Zn와 Yb를 첨가한 $LiNbO_3$ 단결정의 광학적 특성 (Crystal growth and optical properties of Zn and Yb co-doped $LiNbO_3$ rod-shape single crystal by micro-pulling down method)

  • 허지윤;이호준;윤대호
    • 한국결정성장학회지
    • /
    • 제19권1호
    • /
    • pp.11-14
    • /
    • 2009
  • Micro-pulling down(${\mu}-PD$)법을 이용하여 직경 2mm, 길이 $15{\sim}25\;mm$의 Zn와 Yb가 첨가된 near-stoichiometric 조성의 $LiNbO_3$ 단결정을 성장하였다. 일정 직경의 매끄럽고 결함이 없는 양질의 단결정임을 확인하였고, 결정 내 첨가된 Zn와 Yb의 조성이 고루 분포되었음을 알 수 있었다. Raman spectra를 통해 나타난 모든 peak은 $LiNbO_3$ power의 peak과 일치함을 알 수 있었고, 이를 통해 Hexagonal 구조의 $LiNbO_3$가 성장되었음을 확인할 수 있었다. Zn의 첨가량 증가에 따른 IR 영역의 투과도 비교를 통해 광손상을 억제에 효과가 있는 Zn 첨가의 역치량이 1 mol%임을 알 수 있었다.

일축 압축하중 하 다공성 폴리우레탄폼의 재료비선형 거동 및 미세구조 변화 (Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads)

  • 이은선;고태식;이치승
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.688-694
    • /
    • 2017
  • Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.

산화반응에 의한 이방성 메조페이스 탄소섬유의 구조 변화(I) - TEM 및 XRD를 이용한 분석 (Structural Changes during Oxidation Process of Anisotopic Mesophase Carbon fibers(I) - TEM and XRD Study)

  • 노재승
    • 한국재료학회지
    • /
    • 제13권12호
    • /
    • pp.825-830
    • /
    • 2003
  • Structural changes during oxidation of anisotopic mesophase carbon fiber(AMCFs) have been observed with TEM and XRD. It was shown that the AMCFs are three dimensionally stacked structure of turbostratic layers, and are non-homogeneous structure which consist of the highly ordered areas and the random areas. The $d_{ 002}$, Lc, and La of AMCFs which were measured by XRD were 3.44, 146, and $135\AA$, respectively. It was observed that the oxidation initiated at the random areas, because the $d_{002}$ / decreased to the value of 3.41 $\AA$ during initial oxidation stage. It was also observed that the La of the oxidized AMCFs increased up to 182 $\AA$ during the whole oxidation process, and the $d_{002}$ of that increases up to 9.44 $\AA$ when the burn-off is over the degree of 20%. Therefore, it was suggested that the micro-crystalline grew up by heat treatment effects during the fibers were oxidized, In addition, it was shown that there was difference in the measured value of La by XRD and TEM, in case of 39% oxidized fibers for example, the measured La was $ 165\AA$ by XRD and in the range of 180∼220 $\AA$ by TEM.

355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술 (Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength)

  • 장원석;신보성;김재구;황경현
    • 한국광학회지
    • /
    • 제14권3호
    • /
    • pp.312-320
    • /
    • 2003
  • 본 연구에서는 355 nm의 파장을 갖는 Nd:YVO$_4$ 3고주파 DPSS 레이저를 이용하여 폴리머의 3차원 미세형상 가공기술을 개발하였다. UV레이저와 폴리머의 어블레이션에 관한 메커니즘을 설명하였으며 비교적 UV영역에서 파장이 긴 355 nm파장의 영역에서는 광열분해 반응으로 가공되고 이에 따른 폴리머의 광학적 특성을 살펴보았다. 광 흡수율 특성이 우수한 폴리머가 광가공 특성이 좋은 것으로 나타났으나 벤젠구조가 많이 포함되어 있는 폴리이미드의 경우는 광분해후 다시 새로운 화학적 결합이 이루어져 가공부 면이 좋지 않은 면을 보였다. 레이저의 다중 주사방식으로 가공하기위하여 표면의 오염이 적은 폴리카보네이트를 시편으로 사용하여 3차원 적으로 모델링한 직경 1 mm와 500 $\mu\textrm{m}$의 마이크로 팬을 가공하였다. 레이저 발진 효율이 높고 유지비가 적은 355 nm의 DPSSL을 이용한 3차원 가공기술의 개발로 향후 저비용으로 빠른 시간에 미세부품을 개발하는 기술에 기여할 것으로 예상된다.

Superhydrophobic nano-hair mimicking for water strider leg using CF4 plasma treatment on the 2-D and 3-D PTFE patterned surfaces

  • Shin, Bong-Su;Moon, Myoung-Woon;Kim, Ho-Young;Lee, Kwang-Ryeol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.365-365
    • /
    • 2010
  • Similar to the superhydrophobic surfaces of lotus leaf, water strider leg is attributed to hierarchical structure of micro pillar and nano-hair coated with low surface energy materials, by which water strider can run and even jump on the water surface. In order to mimick its leg, many effort, especially, on the fabrication of nanohairs has been made using several methods such as a capillarity-driven molding and lithography using poly(urethane acrylate)(PUA). However most of those effort was not so effective to create the similar structure due to its difficulty in the fabrication of nanoscale hairy structures with hydrophobic surface. In this study, we have selected a low surface energy polymeric material of polytetrafluoroethylene (PTFE, or Teflon) assisted with surface modification of CF4 plasma treatment followed by hydrophobic surface coating with pre-cursor of hexamethyldisiloxane (HMDSO) using a plasma enhanced chemical vapor deposition (PE-CVD). It was found that the plasma energy and duration of CF4 treatment on PTFE polymer could control the aspect ratio of nano-hairy structure, which varying with high aspect ratio of more than 20 to 1, or height of over 1000nm but width of 50nm in average. The water contact angle on pristine PTFE surface was measured as approximately $115^{\circ}$. With nanostructures by CF4 plasma treatment and hydrophobic coating of HMDSO film, we made a superhydrophobic nano-hair structure with the wetting angle of over $160^{\circ}C$. This novel fabrication method of nanohairy structures has been applied not only on 2-D flat substrate but also on 3-D substrates like wire and cylinder, which is similarly mimicked the water strider's leg.

  • PDF

세라믹 그린시트의 미세 비아홀 펀칭 공정 연구 (A study on micro punching process of ceramic green sheet)

  • 신승용;주병윤;임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.101-106
    • /
    • 2003
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole quality is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene Terephthalate) one. In this paper we found the correlation between hole quality and process condition such as ceramic thickness, and tool size. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

  • PDF

미세구동을 위한 3자유도 병렬식 매니퓨레이터 개발에 관한 연구 (Development of Three D.O.F. Parallel Manipulator for Micro-motion)

  • 이계영;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1067-1070
    • /
    • 1995
  • In this paper, we have treated the modeling and development of three degree of freedom parallel manipulator for micromotion based on the Stewart platform type parallel structure. the kinematic modeling was derived from the relation between base coordinate and platform anr the dynamic modeling was from the method of Kinematic Influence Coefficients(KIC) and transferring of the generalized coordinates. Using this method, we presented the method to choose the actuator and joint by investigating the actuating forces needed when the manipulator moves along the given trajectory. In the end, the prototype manipulator was developmented and evaluated.

  • PDF

미세 비아홀 펀칭 공정 중 이종 재료 두께에 따른 버 생성 (Thickness Effect of Double Layered Sheet on Burr Formation during Micro-Via Hole Punching Process)

  • 신승용;임성한;주병윤;오수익
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.65-71
    • /
    • 2004
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole qualify is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene terephthalate) one. In this paper we found the correlation between hole quality and process condition such as PET thickness and ceramic thickness. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

3차원 미세 구조물 제작을 위한 폴리머 유동 모델의 적용 (Application of the Polymer Behavior Model to 3D Structure Fabrication)

  • 김종영;조동우
    • 한국정밀공학회지
    • /
    • 제26권12호
    • /
    • pp.123-130
    • /
    • 2009
  • This study presents the application of a polymer behavior model that considers fluid mechanics and heat transfer effects in a deposition system. The analysis of the polymer fluid properties is very important in the fabrication of precise microstructures. This fluid behavior model involves the calculation of velocity distribution and mass flow rates that include the effect of heat loss in the needle. The effectiveness of the proposed method was demonstrated by comparing estimated mass fluid rates with experimental values. The mass fluid rates under various process conditions, such as pressure, temperature, and needle size, reflected the actual deposition state relatively well, and the assumption that molten polycaprolactone(PCL) is a non-Newtonian fluid was reasonable. The successful fabrication of three-dimensional microstructures demonstrated that the model is valid for predicting the polymer behavior characteristics in the microstructure fabrication process. The results of this study can be used to investigate the effect of various parameters on fabricated structures before turning to experimental approaches.