• 제목/요약/키워드: 3D micro-channel

검색결과 45건 처리시간 0.028초

열간가압소결에 의해 제조된 AlN-hBN 복합재료의 마이크로 엔드밀링 가공특성 평가 (Evaluation of Micro End-Milling Characteristics of AlN-hBN Composites Sintered by Hot-Pressing)

  • 백시영;조명우;서태일
    • 대한금속재료학회지
    • /
    • 제46권6호
    • /
    • pp.390-401
    • /
    • 2008
  • The objective of this study is to evaluate various machining characteristics of AlN-hBN machinable ceramics in micro end-milling process for its further application. First, AlN based machinable ceramics with hBN contents in the range of 10 to 20vol% were prepared by hot-pressing. Material properties of the composites, such as relative density, Vickers hardness, flexural strength, Young's modulus and fracture toughness were measured and compared. Then, micro end-milling experiments were performed to fabricate micro channels using prepared system. During the process, cutting forces, vibrations and AE signals were measured and analyzed using applied sensor system. Machined micro channel shapes and surface roughness were measured using 3D non-contact type surface profiler. From the experimental results, it can be observed that the cutting forces, vibrations and AE signal amplitudes decreased with increasing hBN contents. Also, measured surface roughness and profiles were improved with increasing hBN contents. As a result of this study, optimum machining conditions can be determined to fabricate desired products with AlN-hBN machinable ceramics based on the experimental results of this research.

3차원 마이크로 디바이스 개발을 위한 나노 스테레오리소그래피 공정 개발에 관한 연구 (Development of Nano-Stereolithography Process for Precise Fabrication of Three-Dimensional Micro-Devices)

  • 박상후;임태우;양동열;이신욱;공홍진;이광섭
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권1호
    • /
    • pp.45-49
    • /
    • 2006
  • A nano-stereolithography (NSL) process has been developed for the fabrication of three-dimensional (3D) micro-devices with high spatital resolution of approximately 100 nm. In the NSL process, a complicated 3D structure can be created by stacking layer-by-layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D stacked structure was finished, unsolidified liquid resins were rinsed by ethanol to develop the fabricated structures; then, the polymerized structure was only left on the glass substrate. Through this work, several 3D microstructures such as a micro-channel, shell structures, and photonic crystals were fabricated to evaluate the possibility of the developed system.

마이크로 유체렌즈를 이용한 마이크로 PIV 측정에 관한 실험적 연구 (Experimental Study on Micro PIV Measurement using a Micro Liquid Lens)

  • 정성룡;당중덩;최진호;김규만;박철우
    • 한국가시화정보학회지
    • /
    • 제8권3호
    • /
    • pp.22-28
    • /
    • 2010
  • In the present study, we performed the velocity field measurement in a microchannel using a focal length variable micro liquid lens. The liquid lens is used as a beam expander in a micro-PIV system to acquire the scatter image of the seeded particle. A thin film-type micro liquid lens was made of PDMS material and it was attached on top of the 700-micron-wide working fluid supply channel trench. As a result, the focal length and contact angle of the liquid lens changed with variations in applied pressure.

마이크로 채널 판형 열교환기의 3차원 형상에 따른 열전달 특성 및 압력강하 실험 (Experiments on Heat Transfer Characteristics and Pressure Drop in Micro-channel Plate Heat Exchangers with 3D shapes)

  • 서장원;이규정;김윤호;문정은
    • 설비공학논문집
    • /
    • 제20권3호
    • /
    • pp.213-219
    • /
    • 2008
  • Microscale heat transfer and microfluidics have become increasingly important to overcome some very complex engineering challenges. The use of very small passages to gain heat transfer enhancement is a well documented method for achieving high heat flux dissipation. In this study, the performance evaluation of micro-channel plated heat exchangers with straight, V-shaped and Y-shaped channels has been experimentally carried out under the counterflow condition. It is found that the mixing effect in V-shaped and Y-shaped channels enhances the heat transfer but pressure drop does not increase seriously in the range of low Reynolds number.

나노구체의 자기조립 성질과 표면장력을 이용한 나노유체필터 및 나노포어 마이크로믹서 (Development of the Nanofluidic Filter and Nanopore Micromixer Using Self-Assembly of Nano-Spheres and Surface Tension)

  • 서영호;최두선
    • 대한기계학회논문집A
    • /
    • 제31권9호
    • /
    • pp.910-914
    • /
    • 2007
  • We present a simple and an inexpensive method for the fabrication of a nano-fluidic filter and a nano-pore micromixer using self-assembly of nano-spheres and surface tension. Colloid-plug was formed by surface tension of liquid in a microchannel to fabricate nanofluidic filter. When colloid is evaporated, nano-spheres in a colloid are orderly stacked by a capillary force. Orderly stacked nano-spheres form 3-D nano-mesh which can be used as a mesh structure of a fluidic filter. We used silica nano-sphere whose diameter is $567{\pm}85nm$, and silicon micro-channel of $50{\mu}m$-diameter. Fabricated nano-fluidic filter in a micro-channel has median pore diameter of 158nm which was in agreement with expected diameter of the nano-pore of $128{\pm}19nm$. A nano-pore micromixer consists of $200\;{\mu}m-wide,\;100\;{\mu}m-deep$ micro-channel and self-assembled nano-spheres. In the nano-pore micromixer, two different fluids had no sooner met together than two fluids begin to mix at wide region. From the experimental study, we completely apply self-assembly of nano-spheres to nano-fluidic devices.

'LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구: (다양한 채널구조에 따른 성능변화 고찰)' (A Study on the Optimum Design for LTCC Micro-Reformer: (Performance Evaluation of Various Flow Channel Structures)

  • 정찬화;오정훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.551-552
    • /
    • 2006
  • The miniature fuel cells have emerged as a promising power source for applications such as cellular phones, small digital devices, and autonomous sensors to embedded monitors or to micro-electro mechanical system (MEMS) devices. Several chemicals run candidate at a fuel in those systems, such as hydrogen. methanol, ethanol, acetic acid, and di-methyl ether (DME). Among them, hydrogen shows most efficient fuel performance. However, there are some difficulties in practical application for portable power sources. Therefore, more recently, there have been many efforts for development of micro-reformer to operate highly efficient micro fuel cells with liquid fuels such as methanol, ethanol, and DME In our experiments, we have integrated a micro-fuel processor system using low temperature co-fired ceramics (LTCC) materials. Our integrated micro-fuel processor system is containing embedded heaters, cavities, and 3D structures of micro- channels within LTCC layers for embedding catalysts (cf. Figs. 1 and 2). In the micro-channels of LTCC, we have loaded $CuO/ZnO/Al_2O_3$ catalysts using several different coating methods such as powder packing or spraying, dipping, and washing of catalyst slurry.

  • PDF

혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구 (Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel)

  • 박정연;고범석;김기영;이동목;윤길상
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

PROX 반응기가 있는 50W급 세라믹재질의 소형 reformer 개발 (Development of a 50W Powered Ceramic Micro Reformer Equiped with PROX Reactor)

  • 정찬화;김우재;오정훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.225-229
    • /
    • 2005
  • We have designed micro-fuel processor system, which consists of a steam reforming area and a PROX(preferential oxidation) area. Micro-fuel processor system generates $H_2$ rich gas from a methanol. In our experiment, we have integrated micro-fuel processor system using low temperature cofired ceramics (LTCC) process because LTCC is superior to other materials principally due to their high thermal and chemical stability, simpler fabrication processes, and lower materials cost. Therefore, we have studied and integrated micro-fuel processor system containing embedded heaters, cavities, and 3D structures of micro-channel with LTCC. Also we have optimized the LTCC process.

  • PDF

2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석 (DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL)

  • 신승원
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구 (Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study)

  • 삼수딘 모하메드 무르시드;김승준;마상범;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.