• Title/Summary/Keyword: 3D medical image

Search Result 581, Processing Time 0.033 seconds

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF

Teleconference System based on 3D Medical Image (3차원 의학영상을 이용한 원격회의시스템)

  • Park, J.Y.;Nam, S.A.;Choi, S.M.;Hong, H.;You, H.S.;Im, J.Y.;Kim, J.;Kim, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.147-150
    • /
    • 1996
  • We are developing a teleconference system based on 3D medical image. The system consists in three sub-systems : conference operating system, medical image processing system and database management system. It makes it possible efficient computer-supported coorperative work among remote multi-located hospitals. In this paper, we present functions of each subsystem that have implemented until now.

  • PDF

Computer-aided Design and Fabrication of Bio-mimetic Scaffold for Tissue Engineering Using the Triply Periodic Minimal Surface (삼중 주기적 최소곡면을 이용한 조직공학을 위한 생체모사 스캐폴드의 컴퓨터응용 설계 및 제작)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.834-850
    • /
    • 2011
  • In this paper, a novel tissue engineering scaffold design method based on triply periodic minimal surface (TPMS) is proposed. After generating the hexahedral elements for a 3D anatomical shape using the distance field algorithm, the unit cell libraries composed of triply periodic minimal surfaces are mapped into the subdivided hexahedral elements using the shape function widely used in the finite element method. In addition, a heterogeneous implicit solid representation method is introduced to design a 3D (Three-dimensional) bio-mimetic scaffold for tissue engineering from a sequence of computed tomography (CT) medical image data. CT image of a human spine bone is used as the case study for designing a 3D bio-mimetic scaffold model from CT image data.

Real 3-D Shape Restoration using Lookup Table (룩업 테이블을 이용한 물체의 3-D 형상복원)

  • Kim, Kuk-Se;Lee, Jeong-Gi;Song, Gi-Beom;Kim, Choong-Won;Lee, Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1096-1101
    • /
    • 2004
  • The 3-D shape use to effect of movie, animation, industrial design, medical treatment service, education, engineering etc.... But it's not easy to make 3-D shape from the information of 2-D image. There are two methods in restoring 3-D video image through 2-D image; First the method of using a laser; Secondly the method of acquiring 3-D image through stereo vision. Instead of doing two methods with many difficulties, I figure out the method of simple 3-D image in this research paper. We present here a simple and efficient method, called direct calibration, which doesn't require any equations at all. The direct calibration procedure builds a lookup table(LUT) linking image and 3-D coordinates by a real 3-D triangulation system. The LUT is built by measuring the image coordinates of a grid of known 3-D points, and recording both image and world coordinates for each point; the depth values of all other visible points are obtained by interpolation.

The Evaluation of Reconstructed Images in 3D OSEM According to Iteration and Subset Number (3D OSEM 재구성 법에서 반복연산(Iteration) 횟수와 부분집합(Subset) 개수 변경에 따른 영상의 질 평가)

  • Kim, Dong-Seok;Kim, Seong-Hwan;Shim, Dong-Oh;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • Purpose: Presently in the nuclear medicine field, the high-speed image reconstruction algorithm like the OSEM algorithm is widely used as the alternative of the filtered back projection method due to the rapid development and application of the digital computer. There is no to relate and if it applies the optimal parameter be clearly determined. In this research, the quality change of the Jaszczak phantom experiment and brain SPECT patient data according to the iteration times and subset number change try to be been put through and analyzed in 3D OSEM reconstruction method of applying 3D beam modeling. Materials and Methods: Patient data from August, 2010 studied and analyzed against 5 patients implementing the brain SPECT until september, 2010 in the nuclear medicine department of ASAN medical center. The phantom image used the mixed Jaszczak phantom equally and obtained the water and 99mTc (500 MBq) in the dual head gamma camera Symbia T2 of Siemens. When reconstructing each image altogether with patient data and phantom data, we changed iteration number as 1, 4, 8, 12, 24 and 30 times and subset number as 2, 4, 8, 16 and 32 times. We reconstructed in reconstructed each image, the variation coefficient for guessing about noise of images and image contrast, FWHM were produced and compared. Results: In patients and phantom experiment data, a contrast and spatial resolution of an image showed the tendency to increase linearly altogether according to the increment of the iteration times and subset number but the variation coefficient did not show the tendency to be improved according to the increase of two parameters. In the comparison according to the scan time, the image contrast and FWHM showed altogether the result of being linearly improved according to the iteration times and subset number increase in projection per 10, 20 and 30 second image but the variation coefficient did not show the tendency to be improved. Conclusion: The linear relationship of the image contrast improved in 3D OSEM reconstruction method image of applying 3D beam modeling through this experiment like the existing 1D and 2D OSEM reconfiguration method according to the iteration times and subset number increase could be confirmed. However, this is simple phantom experiment and the result of obtaining by the some patients limited range and the various variables can be existed. So for generalizing this based on this results of this experiment, there is the excessiveness and the evaluation about 3D OSEM reconfiguration method should be additionally made through experiments after this.

  • PDF

Usefulness of Region Cut Subtraction in Fusion & MIP 3D Reconstruction Image (Fusion & Maximum Intensity Projection 3D 재구성 영상에서 Region Cut Subtraction의 유용성)

  • Moon, A-Reum;Chi, Yong-Gi;Choi, Sung-Wook;Lee, Hyuk;Lee, Kyoo-Bok;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2010
  • Purpose: PET/CT combines functional and morphologic data and increases diagnostic accuracy in a variety of malignancies. Especially reconstructed Fusion PET/CT images or MIP (Maximum Intensity Projection) images from a 2-dimensional image to a 3-dimensional one are useful in visualization of the lesion. But in Fusion & MIP 3D reconstruction image, due to hot uptake by urine or urostomy bag, lesion is overlapped so it is difficult that we can distinguish the lesion with the naked eye. This research tries to improve a distinction by removing parts of hot uptake. Materials and Methods: This research has been conducted the object of patients who have went to our hospital from September 2008 to March 2009 and have a lot of urine of remaining volume as disease of uterus, bladder, rectum in the result of PET/CT examination. We used GE Company's Advantage Workstation AW4.3 05 Version Volume Viewer program. As an analysis method, set up ROI in region of removal in axial volume image, select Cut Outside and apply same method in coronal volume image. Next, adjust minimum value in Threshold of 3D Tools, select subtraction in Advanced Processing. It makes Fusion & MIP images and compares them with the image no using Region Cut Definition. Results: In Fusion & MIP 3D reconstruction image, it makes Fusion & MIP images and compares them by using Advantage Workstation AW4.3 05's Region Cut Subtraction, parts of hot uptake according to patient's urine can be removed. Distinction of lesion was clearly reconstructed in image using Region Cut Definition. Conclusion: After examining the patients showing hot uptake on account of volume of urine intake in bladder, in process of reconstruction image, if parts of hot uptake would be removed, it could contribute to offering much better diagnostic information than image subtraction of conventional method. Especially in case of disease of uterus, bladder and rectum, it will be helpful for qualitative improvement of image.

  • PDF

Lossless Medical Image Compression with SPIHT and Lifting Steps (SPIHT알고리즘과 Lifting 스텝을 이용한 무손실 의료 영상 압축 방법)

  • 김영섭;정제창
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2395-2398
    • /
    • 2003
  • This paper focuses on lossless medical image compression methods for medical images that operate on two-dimensional(2D) reversible integer wavelet transform. We offer an application of the Set Partitioning in Hierarchical Trees(SPIHT) algorithm [1][3][9] to medical images, using a 2D wavelet decomposition and a 2D spatial dependence tree. The wavelet decomposition is accomplished with integer wavelet filters implemented with the lifting method, where careful scaling and truncations keep the integer precision small and the transform unitary. We have tested our encoder on medical images using different integer filters. Results show that our algorithm with certain filters performs as well and sometimes better in lossless coding than previous coding systems using 2D integer wavelet transforms on medical images.

  • PDF

Medical Image Processing System for Morphometric and Functional Analysis of a Human Brain (인간 뇌의 형태적 및 기능적 분석을 위한 의료영상 처리시스템)

  • Kim, Tae-U
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.977-991
    • /
    • 2000
  • In this paper, a medical image processing system was designed and implemented for morphometric and functional analysis of a human brain. The system is composed of image registration, ROI(region of interest) analysis, functional analysis, image visualization, 3D medical image database management system(DBMS), and database. The software processes an anatomical and functional image as input data, and provides visual and quantitative results. Input data and intermediate or final output data are stored to the database as several data types by the DBMS for other further image processing. In the experiment, the ROI analysis, for a normal, a tumor, a Parkinson's decease, and a depression case, showed that the system is useful for morphometric and functional analysis of a human brain.

  • PDF

Consideration of the Effect of Artifact during the Image Guided Radiation Therapy Using the Fiducial Marker (영상 유도 방사선치료 시 Fiducial Marker의 Artifact에 관한 연구)

  • Kim, Jong-Min;Kim, Dae-Sup;Back, Geum-Mun;Kang, Tae-Yeong;Hong, Dong-Ki;Yun, Hwa-Yong;Kwon, Kyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Purpose: The effect of artifact was analyzed, which occurs from fiducial marker during the liver Image Guided Radiation Therapy (IGRT) using the fiducial marker. Materials and Methods: The size of artifact of fixed fiducial marker and length of mobile fiducial marker locus were measured using the On-Board Imager system (OBI) and CT simulator, and 2D-2D matching and 3D-3D matching were carried out, respectively, and at this time, the coordinates transition value of couch was analyzed. Results: The measurement of fixed fiducial marker artifact size indicated CT 4.90, 8.10, 12.90, 19.70 mm and OBI 5.60, 10.60, 14.70, 29.40 mm based on the reference CT slice thickness of 1.25, 2.50, 5.00, and 10.00 mm. Meanwhile, the measurement of mobile fiducial marker locus length indicated CT 42.00, 43.10, 46.50 mm, and OBI 43.40, 46.00, 49.30 mm. The coordinates transition of 1.00, 2.00, and 8.00 mm occurred between 2D-2D matching and 3D-3D matching. Conclusion: It was confirmed that the therapy error increased during IGRT due to the influence of artifact when CT slice thickness increased. Thus, it may be desirable to acquire the image less than 2.50 mm in slice thickness when IGRT is implemented using the fiducial marker.

  • PDF