• Title/Summary/Keyword: 3D imaging technique

Search Result 264, Processing Time 0.031 seconds

Applications of Optical Imaging System in Dentistry

  • Eom, Joo Beom;Park, Anjin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Optical-based imaging technology has high resolution and can assess images in real time. Numerous studies have been conducted for its application in the dental field. The current research introduces an oral camera that includes fluorescent imaging, a second study examining a 3D intraoral scanner applying a confocal method and a polarization structure that identifies the 3D image of a tooth, and finally, an optical coherence tomography technique. Using this technique, we introduce a new concept 3D oral scanner that simultaneously implements 3D structural imaging as well as images that diagnose the inside of teeth. With the development of light source technology and detector technology, various optical-based imaging technologies are expected to be applied in dentistry.

Three-dimensional QR Code Using Integral Imaging (집적 영상을 활용한 3차원 QR code)

  • Kim, Youngjun;Cho, Ki-Ok;Han, Jaeseung;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2363-2369
    • /
    • 2016
  • In this paper, we propose three-dimensional (3D) quick-response (QR) code generation technique using passive 3D integral imaging and computational integral imaging reconstruction technique. In our proposed method, we divide 2D QR code into 4 planes with different reconstruction depths and then we generate 3D QR code using synthetic aperture integral imaging and computational reconstruction. In this 3D QR code generation process, we use integral imaging which is one of 3D imaging technologies. Finally, 3D QR code can be scanned by reconstructing and merging 3D QR codes at 4 different planes with computational reconstruction. Therefore, the security level for QR code scanning may be enhanced when QR code is scanned. To show that our proposed method can improve the security level for QR code scanning, in this paper, we carry out the optical experiments and computational reconstruction. In addition, we show that 3D QR code can be scanned when reconstruction depths are known.

Computational integral imaging reconstruction of 3D object using a depth conversion technique

  • Tan, Chun-Wei;Shin, Dong-Hak;Lee, Byung-Gook;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.730-733
    • /
    • 2008
  • In this paper, a novel CII method using a depth conversion technique is proposed. The proposed method can move a far 3D object near lenslet array and reduce the computation cost dramatically. To show the usefulness of the proposed method, we carry out the preliminary experiment and its results are presented.

  • PDF

Computational Technique of Volumetric Object Reconstruction in Integral Imaging by Use of Real and Virtual Image Fields

  • Shin, Dong-Hak;Cho, Myung-Jin;Park, Kyu-Chil;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.708-712
    • /
    • 2005
  • We propose a computational reconstruction technique in large-depth integral imaging where the elemental images have information of three-dimensional objects through real and virtual image fields. In the proposed technique, we reconstruct full volume information from the elemental images through both real and virtual image fields. Here, we use uniform mappings of elemental images with the size of the lenslet regardless of the distance between the lenslet array and reconstruction image plane. To show the feasibility of the proposed reconstruction technique, we perform preliminary experiments and present experimental results.

  • PDF

Computational reconstruction techniques in integral imaging by use of a lenslet array

  • Shin, Dong-Hak;Kim, Eun-Soo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1588-1591
    • /
    • 2005
  • In this paper, we propose novel computational reconstruction technique of three-dimensional objects in integral imaging by use of a lenslet array. We applied our technique to two different integral imaging systems according the distance between lenslet array and elemental image plane. Experimental results are presented and discussed as well.

  • PDF

3D Image Display Method using Synthetic Aperture integral imaging (Synthetic aperture 집적 영상을 이용한 3D 영상 디스플레이 방법)

  • Shin, Dong-Hak;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2037-2042
    • /
    • 2012
  • Synthetic aperture integral imaging is one of promising 3D imaging techniques to capture the high-resolution elemental images using multiple cameras. In this paper, we propose a method of displaying 3D images in space using the synthetic aperture integral imaging technique. Since the elemental images captured from SAII cannot be directly used to display 3D images in an integral imaging display system, we first extract the depth map from elemental images and then transform them to novel elemental images for 3D image display. The newly generated elemental images are displayed on a display panel to generate 3D images in space. To show the usefulness of the proposed method, we carry out the preliminary experiments using a 3D toy object and present the experimental results.

Three-Dimensional Optical Encryption of Quick Response Code

  • Kim, Youngjun;Yun, Hui;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.153-159
    • /
    • 2018
  • In this paper, we present a three-dimensional (3D) optical encryption technique for quick response (QR) code using computational synthesized integral imaging, computational volumetric reconstruction, and double random phase encryption. Two-dimensional (2D) QR code has many advantages, such as enormous storage capacity and high reading speed. However, it does not protect primary information. Therefore, we present 3D optical encryption of QR code using double random phase encryption (DRPE) and an integral imaging technique for security enhancement. We divide 2D QR code into four parts with different depths. Then, 2D elemental images for each part of 2D QR code are generated by computer synthesized integral imaging. Generated 2D elemental images are encrypted using DRPE, and our method increases the level of security. To validate our method, we report simulations of 3D optical encryption of QR code. In addition, we calculated the peak side-lobe ratio (PSR) for performance evaluation.

Three-dimensional/two-dimensional convertible integral imaging display system using an active mask (동적 마스크를 이용한 3D/2D 변환 집적영상 디스플레이 시스템)

  • Oh, Yongseok;Shin, Donghak;Lee, Byung-Gook;Jeong, Shin-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3055-3062
    • /
    • 2014
  • 3D integral imaging technique with an active mask is capable of displaying real 3D images with high resolution in space. In this paper, we present a novel 3D/2D convertible integral imaging display system using an active mask. For the proposed method, the principles of 3D, 2D, and 3D/2D composed operations are explained according to the displayed images through two LCD panels. In 3D mode, the elemental images and the mask images are displayed in two display panels. On the other hand, the light source image and 2D image are displayed in 2D mode. In addition, 3D/2D mode is obtained using the spatial separation for 3D and 2D modes. To show the feasibility of the proposed method, we carry out the preliminary experiments and present the optical results.

Computational Integral Imaging Reconstruction of 3D Object Using a Depth Conversion Technique

  • Shin, Dong-Hak;Kim, Eun-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.131-135
    • /
    • 2008
  • Computational integral imaging(CII) has the advantage of generating the volumetric information of the 3D scene without optical devices. However, the reconstruction process of CII requires increasingly larger sizes of reconstructed images and then the computational cost increases as the distance between the lenslet array and the reconstructed output plane increases. In this paper, to overcome this problem, we propose a novel CII method using a depth conversion technique. The proposed method can move a far 3D object near the lenslet array and reduce the computational cost dramatically. To show the usefulness of the proposed method, we carry out the preliminary experiment and its results are presented.