• Title/Summary/Keyword: 3D imaging

Search Result 1,514, Processing Time 0.031 seconds

The nuclear medicinal study on degenerative arthritis of knee joint using traditional acupuncture (퇴행성 슬관절염에 대한 핵의학적 고찰)

  • Kim, Young-Gue;Park, So-Young;Koh, Kang-Hoon;Yoon, Min-Young;Jin, Kyong-Sun;Chang, Byoung-Sun;Oh, Hee-Hong;Kim, Sung-Chul;Hwang, Woo-Jun;Song, Ho-Chun;Ahn, Soo-Gi
    • Journal of Acupuncture Research
    • /
    • v.19 no.1
    • /
    • pp.127-134
    • /
    • 2002
  • Background and Purpose : Now, a lot of people are suffering from arthritis of knee joint. Western and oriental medicine, all of them are trying various methods to cure this disease, but generally the grade or level of repairing has been decided by the subjective estimation of the patients and doctors. So, we suggest the new standard for estimating the level of repair in this disease using nuclear medicine. Objective : To evalute the difference of the blood pool and delayed images in the correlation with clinical symptoms in patients with arthritis of knee joint by using acupuncture. Methods : Eight patients with arthritis of knee joint included in this study. Using Thermograph (D.I.T.I) and Radionuclide, we obtained the results. In Bone scan Tc-99m MDP, and MIBI scan was obtained at 1 minute and 3 hour after injection of 1,110 MBq Tc-99m MDP and MIBI. The analysis was carried out hurted area of joint. The Joint-to-background(J/B) ratios were obtained exclusively in the joints regions. Clinical symptoms were evaluated as pain and swelling graded from 0(no) to 5(severe) in the same joints, respectively. Results : J/B ratios on the delayed scans were higher than those on blood pool images. There was significant correlation between clinical symptoms and J/B on blood pool image in the joints =0.03). Conclusion : The results demonstrate that blood pool images of Tc-99m MDP scintigraphy correlates with clinical symptoms more than delayed images in patients with arthritis Joint.

  • PDF

A of Radiation Field with a Developed EPID

  • Y.H. Ji;Lee, D.H.;Lee, D.H.;Y.K. Oh;Kim, Y.J.;C.K. Cho;Kim, M.S.;H.J. Yoo;K.M. Yang
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.67-67
    • /
    • 2003
  • It is crucial to minimize setup errors of a cancer treatment machine using a high energy and to perform precise radiation therapy. Usually, port film has been used for verifying errors. The Korea Cancer Center Hospital (KCCH) has manufactured digital electronic portal imaging device (EPID) system to verify treatment machine errors as a Quality Assurance (Q.A) tool. This EPID was consisted of a metal/fluorescent screen, 45$^{\circ}$ mirror, a camera and an image grabber and could display the portal image with near real time KIRAMS has also made the acrylic phantom that has lead line of 1mm width for ligh/radiation field congruence verification and reference points phantom for using as an isocenter on portal image. We acquired portal images of 10$\times$10cm field size with this phantom by EPID and portal film rotating treatment head by 0.3$^{\circ}$, 0.6$^{\circ}$ and 0.9$^{\circ}$. To check field size, we acquired portal images with 18$\times$18cm, 19$\times$19cm and 20$\times$20cm field size with collimator angle 0$^{\circ}$ and 0.5$^{\circ}$ individually. We have performed Flatness comparison by displaying the line intensity from EPID and film images. The 0.6$^{\circ}$ shift of collimator angle was easily observed by edge detection of irradiated field size on EPID image. To the extent of one pixel (0.76mm) difference could be detected. We also have measured field size by finding optimal threshold value, finding isocenter, finding field edge and gauging distance between isocenter and edge. This EPID system could be used as a Q.A tool for checking field size, light/radiation congruence and flatness with a developed video based EPID.

  • PDF

Multiple Reference Network Data Processing Algorithms for High Precision of Long-Baseline Kinematic Positioning by GPS/INS Integration (GPS/INS 통합에 의한 고정밀 장기선 동적 측위를 위한 다중 기준국 네트워크 데이터 처리 알고리즘)

  • Lee, Hung-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.135-143
    • /
    • 2009
  • Integrating the Global Positioning System (GPS) and Inertial Navigation System (INS) sensor technologies using the precise GPS Carrier phase measurements is a methodology that has been widely applied in those application fields requiring accurate and reliable positioning and attitude determination; ranging from 'kinematic geodesy', to mobile mapping and imaging, to precise navigation. However, such integrated system may not fulfil the demanding performance requirements when the baseline length between reference and mobil user GPS receiver is grater than a few tens of kilometers. This is because their positioning/attitude determination is still very dependent on the errors of the GPS observations, so-called "baseline dependent errors". This limitation can be remedied by the integration of GPS and INS sensors, using multiple reference stations. Hence, in order to derive the GPS distance dependent errors, this research proposes measurement processing algorithms for multiple reference stations, such as a reference station ambiguity resolution procedure using linear combination techniques, a error estimation based on Kalman filter and a error interpolation. In addition, all the algorithms are evaluated by processing real observations and results are summarized in this paper.

Comparison of the Efficacy of 2D Dosimetry Systems in the Pre-treatment Verification of IMRT (세기조절방사선치료의 환자별 정도관리를 위한 2차원적 선량계의 유용성 평가)

  • Hong, Chae-Seon;Lim, Jong-Soo;Ju, Sang-Gyu;Shin, Eun-Hyuk;Han, Young-Yih;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.91-102
    • /
    • 2009
  • Purpose: To compare the accuracy and efficacy of EDR2 film, a 2D ionization chamber array (MatriXX) and an amorphous silicon electronic portal imaging device (EPID) in the pre-treatment QA of IMRT. Materials and Methods: Fluence patterns, shaped as a wedge with 10 steps (segments) by a multi-leaf collimator (MLC), of reference and test IMRT fields were measured using EDR2 film, the MatriXX, and EPID. Test fields were designed to simulate leaf positioning errors. The absolute dose at a point in each step of the reference fields was measured in a water phantom with an ionization chamber and was compared to the dose obtained with the use of EDR2 film, the MatriXX and EPID. For qualitative analysis, all measured fluence patterns of both reference and test fields were compared with calculated dose maps from a radiation treatment planning system (Pinnacle, Philips, USA) using profiles and $\gamma$ evaluation with 3%/3 mm and 2%/2 mm criteria. By measurement of the time to perform QA, we compared the workload of EDR2 film, the MatriXX and EPID. Results: The percent absolute dose difference between the measured and ionization chamber dose was within 1% for the EPID, 2% for the MatriXX and 3% for EDR2 film. The percentage of pixels with $\gamma$%>1 for the 3%/3 mm and 2%/2 mm criteria was within 2% for use of both EDR2 film and the EPID. However, differences for the use of the MatriXX were seen with a maximum difference as great as 5.94% with the 2%/2 mm criteria. For the test fields, EDR2 film and EPID could detect leaf-positioning errors on the order of -3 mm and -2 mm, respectively. However it was difficult to differentiate leaf-positioning errors with the MatriXX due to its poor resolution. The approximate time to perform QA was 110 minutes for the use of EDR2 film, 80 minutes for the use of the MatriXX and approximately 55 minutes for the use of the EPID. Conclusion: This study has evaluated the accuracy and efficacy of EDR2 film, the MatriXX and EPID in the pre-treatment verification of IMRT. EDR2 film and the EPID showed better performance for accuracy, while the use of the MatriXX significantly reduced measurement and analysis times. We propose practical and useful methods to establish an effective QA system in a clinical environment.

A study for diagnosis and pattern identification of Hwa-Byung (화병의 진단 및 변증유형에 관한 연구)

  • Lee, Hui-Young;Park, Jong-Hoon;Whang, Wei-Wan;Kim, Jong-Woo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.16 no.1
    • /
    • pp.1-17
    • /
    • 2005
  • Objective : This empirical research is performed to recognize diagnostic concept, pattern identification, and clinical features of Hwa-byung. In other words, the aims of this research are to examine the differences of the diagnosis between Hwa-Byung and the other psychiatric disorders, and to find out pattern identification, and clinical characteristics of Hwa-Byung for prescriptions of this syndrome. Method : In the experiment, there were participated 30 patients who were met for our criterions according to HBDIS (Hwa-Byung Diagnostic interview Schedule). These patients were diagnosed as Axis1 according to criterions of DSM-IV with administering SCID-I. OMS-prime was utilized for finding out pattern identification of oriental medicine. Symptom Check List-90-Revision(SCL-90-R), Hemilton rating Scale for Depression(HRSD), Heart Rate Variability(HRV), and Digital Infrared Thermographic imaging(D.I.T.I.) were also utilized to discover clinical characteristics of Hwa-Byung Patients. Results : 1. Regarding Sex-ratio, male subjects were 3(10%), and female subjects are 27(90%). The age of subjects ranged from 22 year old to 75 $(51.87{\pm}11.04;\:Mean{\pm}SD)$ 2. In the results of diagnosis on the basis of DSM-IV, the 17(56.67%) patients were MOD (Major Depressive Disorder), the 5(16.67%) patients were USD (Undifferentiated Somatoform Disorder), the 4(13.33%) patients were Dysthymic Disorder, the 3(10%) patients were GAD (Generalized Anxiety Disorder), and the 1(3.33%) was Panic Disorder. Two of the patients who diagnosed as MOD were diagnosed as Panic Disorder too, and one of them was diagnosed as Pain Disorder too. 3. Regarding pattern identification, Hwa-Byung is positively correlated to deficiency of Heart(心). and then to stagnancy of Liver-Gall bladder. Hwa-Byung is correlated deficiency symptom-complex rather than excessiveness symptom-complex. That is also correlated positively to Pathological heat and fire. 4. In SCL90-R, the mean of PSDI was $(75.3{\pm}10.7;\:Mean{\pm}SD)$. The each mean of the other 11 factors was distributed between50-70. 5. The mean of HRSD was $(17.9{\pm}5.6;\:Mean{\pm}SD)$ in the entire subject's group. Then the group of MDD was $20.9{\pm}4.4$ and the group of USD was $12.0{\pm}4.8$ 6. In the results of HRV. the mean of TP is $972.4{\pm}1174(Mean{\pm}SD)$, this is lower than normal range 1000-200. The other factors were within normal range. Then, there were no significant differences between them (p<0.05). 7. The temperatures of each acupoint have significant differences between HNl(印堂) and PC6(內關), between CV17(顫中) and PC6(內關), between HN1(印堂) and CV8(神闕), between CV17(顫中) and CV8(神闕) in comparison with the average of body temperature in the use of D.I.T.I. (p<0.01) 8. In the analysis of correlation between SCL-90-R, HRSD, HRV. and D.I.T.I. there were no significant results. According to results that the correlation was analyzed with only the MDD group as subjects, there was negative correlation between RMSSD of HRV and HRSD, between LF of HRV and PDSIof SCL-90-R, and between LF/HF of HRV and ANX, PSY, and PDSI of SCL-90-R. Conclusion : In the observation of clinical features of 30 cases of Hwa-Byung patients by using diverse structured tests, there could make diverse diagnosis as depressive disorder, anxiety disorder, and Somatoform Disorder. Particularly. MDD was highly distributed. Considering oriental medicine's pattern identification of Hwa-Byung, this syndrome is related strongly to Heart, and there were demonstrated deficiency symptom-complex, and Pathological heat and fire. One of the limits of this study is lack of control subject's group, therefore, in the future study, it requires reexamination through a comparative research with these data to complete this study.

  • PDF

Planning and Dosimetric Study of Volumetric Modulated Arc Based Hypofractionated Stereotactic Radiotherapy for Acoustic Schwannoma - 6MV Flattening Filter Free Photon Beam

  • Swamy, Shanmugam Thirumalai;Radha, Chandrasekaran Anu;Arun, Gandhi;Kathirvel, Murugesan;Subramanian, Sai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5019-5024
    • /
    • 2015
  • Background: The purpose of this study was to assess the dosimetric and clinical feasibility of volumetric modulated arc based hypofractionated stereotactic radiotherapy (RapidArc) treatment for large acoustic schwannoma (AS >10cc). Materials and Methods: Ten AS patients were immobilized using BrainLab mask. They were subject to multimodality imaging (magnetic resonance and computed tomography) to contour target and organs at risk (brainstem and cochlea). Volumetric modulated arc therapy (VMAT) based stereotactic plans were optimized in Eclipse (V11) treatment planning system (TPS) using progressive resolution optimizer-III and final dose calculations were performed using analytical anisotropic algorithm with 1.5 mm grid resolution. All AS presented in this study were treated with VMAT based HSRT to a total dose of 25Gy in 5 fractions (5fractions/week). VMAT plan contains 2-4 non-coplanar arcs. Treatment planning was performed to achieve at least 99% of PTV volume (D99) receives 100% of prescription dose (25Gy), while dose to OAR's were kept below the tolerance limits. Dose-volume histograms (DVH) were analyzed to assess plan quality. Treatments were delivered using upgraded 6 MV un-flattened photon beam (FFF) from Clinac-iX machine. Extensive pretreatment quality assurance measurements were carried out to report on quality of delivery. Point dosimetry was performed using three different detectors, which includes CC13 ion-chamber, Exradin A14 ion-chamber and Exradin W1 plastic scintillator detector (PSD) which have measuring volume of $0.13cm^3$, $0.009cm^3$ and $0.002cm^3$ respectively. Results: Average PTV volume of AS was 11.3cc (${\pm}4.8$), and located in eloquent areas. VMAT plans provided complete PTV coverage with average conformity index of 1.06 (${\pm}0.05$). OAR's dose were kept below tolerance limit recommend by American Association of Physicist in Medicine task group-101(brainstem $V_{0.5cc}$ < 23Gy, cochlea maximum < 25Gy and Optic pathway <25Gy). PSD resulted in superior dosimetric accuracy compared with other two detectors (p=0.021 for PSD.

Effect of head positioning on the vertical and horizontal magnification in panoramic radiographs: rotation along the sagittal and transverse plane (파노라마방사선사진에서 환자의 머리 위치가 하악 수직, 수평 확대율에 미치는 영향: 상하 및 좌우회전)

  • Kim, Yong-Gun;Byun, Jin-Seok;An, Seo-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the effect of head position changes on vertical and horizontal magnification in dental panoramic radiographs. Materials and Methods: Five 4 mm metal balls were placed above alveolar crest of dry skull considering extraction socket and dental arch. Panoramic radiographs were taken by OP-100D (Instrumentarium Imaging Co., Tuusula, Finland) at proper and rotated head position along the sagittal and transverse axis at 3 - $20^{\circ}$ upwardly, downwardly, to the left and to the right rotation. Images were stored in DICOM files and were measured by ruler equipped within INFINITT PACS software. Results: The mean horizontal magnification was $1.22{\pm}0.01-1.44{\pm}0.01$ and mean vertical magnification was $1.29{\pm}0.00-1.35{\pm}0.02$ at standard head position. There was statistical significance of horizontal magnification between the anterior ($1.24{\pm}0.02-1.31{\pm}0.03$) and the posterior area ($1.40{\pm}0.03-1.33{\pm}0.02$) (P < 0.05). Vertical magnification resulted in less variation ($1.24{\pm}0.01-1.37{\pm}0.02$) than horizontal magnification ($0.88{\pm}0.03-3.73{\pm}0.16$) according to the rotation. There was statistical significant difference on horizontal magnification (P < 0.05). Conclusion: In rotated head position, the horizontal magnification should be considered because these can cause distortion on panoramic radiographs.

Development and Validation of AI Image Segmentation Model for CT Image-Based Sarcopenia Diagnosis (CT 영상 기반 근감소증 진단을 위한 AI 영상분할 모델 개발 및 검증)

  • Lee Chung-Sub;Lim Dong-Wook;Noh Si-Hyeong;Kim Tae-Hoon;Ko Yousun;Kim Kyung Won;Jeong Chang-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.119-126
    • /
    • 2023
  • Sarcopenia is not well known enough to be classified as a disease in 2021 in Korea, but it is recognized as a social problem in developed countries that have entered an aging society. The diagnosis of sarcopenia follows the international standard guidelines presented by the European Working Group for Sarcopenia in Older People (EWGSOP) and the d Asian Working Group for Sarcopenia (AWGS). Recently, it is recommended to evaluate muscle function by using physical performance evaluation, walking speed measurement, and standing test in addition to absolute muscle mass as a diagnostic method. As a representative method for measuring muscle mass, the body composition analysis method using DEXA has been formally implemented in clinical practice. In addition, various studies for measuring muscle mass using abdominal images of MRI or CT are being actively conducted. In this paper, we develop an AI image segmentation model based on abdominal images of CT with a relatively short imaging time for the diagnosis of sarcopenia and describe the multicenter validation. We developed an artificial intelligence model using U-Net that can automatically segment muscle, subcutaneous fat, and visceral fat by selecting the L3 region from the CT image. Also, to evaluate the performance of the model, internal verification was performed by calculating the intersection over union (IOU) of the partitioned area, and the results of external verification using data from other hospitals are shown. Based on the verification results, we tried to review and supplement the problems and solutions.

HYPER SUPRIME-CAMERA SURVEY OF THE AKARI NEP WIDE FIELD

  • Goto, Tomotsugu;Toba, Yoshiki;Utsumi, Yousuke;Oi, Nagisa;Takagi, Toshinobu;Malkan, Matt;Ohayma, Youichi;Murata, Kazumi;Price, Paul;Karouzos, Marios;Matsuhara, Hideo;Nakagawa, Takao;Wada, Takehiko;Serjeant, Steve;Burgarella, Denis;Buat, Veronique;Takada, Masahiro;Miyazaki, Satoshi;Oguri, Masamune;Miyaji, Takamitsu;Oyabu, Shinki;White, Glenn;Takeuchi, Tsutomu;Inami, Hanae;Perason, Chris;Malek, Katarzyna;Marchetti, Lucia;Lee, HyungMoK;Im, Myung;Kim, Seong Jin;Koptelova, Ekaterina;Chao, Dani;Wu, Yi-Han;AKARI NEP Survey team;AKARIAll Sky Survey Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.225-230
    • /
    • 2017
  • The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z~1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field ($5.4deg^2$), using ~10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ~25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1< z <2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g, r, i, z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate midIR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.