• Title/Summary/Keyword: 3D geo-spatial model

Search Result 42, Processing Time 0.028 seconds

Evaluating a Positioning Accuracy of Roadside Facilities DB Constructed from Mobile Mapping System Point Cloud (Mobile Mapping System Point Cloud를 활용한 도로주변 시설물 DB 구축 및 위치 정확도 평가)

  • KIM, Jae-Hak;LEE, Hong-Sool;ROH, Su-Lae;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.99-106
    • /
    • 2019
  • Technology that cannot be excluded from 4th industry is self-driving sector. The self-driving sector can be seen as a key set of technologies in the fourth industry, especially in the DB sector is getting more and more popular as a business. The DB, which was previously produced and managed in two dimensions, is now evolving into three dimensions. Among the data obtained by Mobile Mapping System () to produce the HD MAP necessary for self-driving, Point Cloud, which is LiDAR data, is used as a DB because it contains accurate location information. However, at present, it is not widely used as a base data for 3D modeling in addition to HD MAP production. In this study, MMS Point Cloud was used to extract facilities around the road and to overlay the location to expand the usability of Point Cloud. Building utility poles and communication poles DB from Point Cloud and comparing road name address base and location, it is believed that the accuracy of the location of the facility DB extracted from Point Cloud is also higher than the basic road name address of the road, It is necessary to study the expansion of the facility field sufficiently.

3D GSIS Application for Managing Flood Disaster (홍수재해관리를 위한 3차원 GSIS적용)

  • Yoo, Hwan-Hee;Kim, Uk-Nam;Kim, Seong-Sam;Chung, Dong-Ki
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.1 s.28
    • /
    • pp.21-29
    • /
    • 2004
  • Floods are disastrous natural phenomena which result in numerous losses of life and property. It is possible to minimize the potential risk by adopting a disaster management system. Nowadays, Geo-Spatial Information System(GSIS) and computer-modelling techniques have assisted scientists and engineers with determining flood disaster assessments, GIS technologies especially have the advantage of performing spatial analysis as well as generating the model for a flood hazard. Therefore, this paper presents the flood management system based on 3D GSIS that can cope with natural disasters actively and manage flood hazard systematically by constructing the database using hydrological data, digital map, DEM, and high-resolution satellite images.

  • PDF

Developing methodology of 3D Cadaster Feature Model using Cadastre Process Analysis (지적 업무 분석을 기반으로 한 3차원 지적 항목 모델 개발 방법)

  • You, Hee Min;Jeong, Dong Hoon;Lee, Ji Yeong
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.55-69
    • /
    • 2013
  • In the modern society, as the city grows and constructive technology gradually develops, land usage has been sophisticated and three-dimensionalized. Consequently, issues such as property ownership and legal claim over ground and underground space have been triggered, which disclose the problems of using two-dimensional cadastral management system. Numerous researches on building three-dimensional cadastral are ongoing such as defining the right relationship of land space and providing the registration and management scheme so as to solve the imminent matter. It is the chief aim of this study to increase efficiency by analyzing the vocational practices through adding on necessary sections and properties for current registration to original research work. If three-dimensional cadastral management system is once constructed, highly qualified services for citizens will be available by providing accurate land related information swiftly, which can result in inevitable improvement of efficiency at work. Hence, this thesis will suggest the internationally suitable feature model development method in terms of standardization by probing into the factual profession to derive each attributes and properties that are related to three-dimensional cadastral and affix them to the classified item requisites of initial research studies.

Experimental Research on the Optimal Surveillance Equipment Allocation Using Geo-spatial Information (지형공간 정보를 이용한 감시장비 배치 최적화 실험 연구)

  • Lee, Yong-Woong;Sung, Chang-Sup;Yang, Woo-Suk;Im, Seong-Bin;Eo, Yang-Dam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.72-79
    • /
    • 2006
  • This study was focused on analyzing mathematical model for optimal allocation of surveillance equipment which is operated on the natural geographical condition, such as DMZ fence area. Optimal allocation algorithm was studied for the equipment to develop the whole surveillance and watch model for the two area as testing. Also 3D visualization program was developed to display and analyze the detecting effect. The results show that our suggested model will be available for enhancing security condition on the watching area.

Extraction of 3D Objects Around Roads Using MMS LiDAR Data (MMS LiDAR 자료를 이용한 도로 주변 3차원 객체 추출)

  • CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.152-161
    • /
    • 2017
  • Making precise 3D maps using Mobile Mapping System (MMS) sensors are essential for the development of self-driving cars. This paper conducts research on the extraction of 3D objects around the roads using the point cloud acquired by the MMS Light Detection and Ranging (LiDAR) sensor through the following steps. First, the digital surface model (DSM) is generated using MMS LiDAR data, and then the slope map is generated from the DSM. Next, the 3D objects around the roads are identified using the slope information. Finally, 97% of the 3D objects around the roads are extracted using the morphological filtering technique. This research contributes a plan for the application of automated driving technology by extracting the 3D objects around the roads using spatial information data acquired by the MMS sensor.

SLM using GIS data formats for 3D virtual model of research (SLM 포맷을 이용한 GIS 데이터의 3D 가상모델에 대한 연구)

  • Han, Jeong-Ah;Seo, Laiwon
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.113-120
    • /
    • 2014
  • In recent years, devices using the smart ponwa IT service is activated, to research how the fusion of two or more devices will be able to be interest in the soybeans. One of them in the mobile sector through the development of network and hardware digital geo-spatial map of the rapid advances being made and the computer, how do you map data to efficiently simulate a 3D environment, providing services through a virtual environment focused on whether be. In this study, augmented reality and GIS (Geographic Information System), SLM (Static LOD Model) that combines augmented reality technology on the basis of the basic concepts and approaches in geographic space and how Augmented Reality Based on this interpretation of the relevant content What to do in the development and utilization has a purpose. In this study, the conventional SLM 3DS model data structure of a data format conversion of the proposed possibilities for analyzing and, SLM model generation and format of the existing three-dimensional visualization tools SLM model format for converting a format to a model function, and visualization features. In addition, 3D virtual model to propose a format for efficiently making.

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

Risk Evaluation and Analysis on Simulation Model of Fire Evacuation based on CFD - Focusing on Incheon Bus Terminal Station (CFD기반 화재 대피 시뮬레이션 모델을 적용한 위험도 평가 분석 -인천터미널역 역사를 대상으로)

  • Kim, Min Gyu;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • Recently, the research to visualize and to reproduce evacuation situations such as terrorism, the disaster and fire indoor space has been come into the spotlight and designing a model for interior space and reliable analysis through safety evaluation of the life is required. Therefore, this paper aims to develop simulation model which is able to suggest evacuation route guidance and safety analysis by considering the major risk factor of fire in actual building. First of all, we designed 3D-based fire and evacuation model at a subway station building in Incheon and performed fire risk analysis through thermal parameters on the basis of interior materials supplied by Incheon Transit Corporation. In order to evaluate safety of a life, ASET (Available Safe Egress Time), which is the time for occupants to endure without damage, and RSET (Required Safe Egress Time) are calculated through evacuation simulation by Fire Dynamics Simulator. Finally, we can come to the conclusion that a more realistic safety assessment is carried out through indoor space model based on 3-dimension building information and simulation analysis applied by safety guideline for measurement of fire and evacuation risk.

Design and Implementation of Service Model for Tailored Residential Space based on 3D Cadastral Information (3차원 지적정보 기반 맞춤형 주거 공간정보 서비스 모델 개발)

  • Bae, Sang Keun;Shin, Yun Ho;Lee, Seong Gyu;Joo, Yong Jin
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.49-57
    • /
    • 2015
  • Recently, Through the linkage and opening, the fusion of the spatial information, it is necessary for productive ecosystem to provide a variety of information and to increase the civil use. Depending on the economic growth, demand for quality of life and well-being has been on the increase. Spatial information service contents for the public convenience has emerged to solve the problem such as health, safety, welfare and discomfort of daily life This study aims to implement search services for a tailored residence space through the three-dimensional data modeling on cadastral information. To achieve this goal, we established the requirements for deriving a registered object by investigating recent trend with respect to existing cadastral data model and defined property and relationship. Focusing on Songpa-gu, Jamsil station in Seoul, we implemented search services for a tailored residence space for three-dimensional right analysis in conjunction with residential and commercial complex building. As a result, we derived a way to supply 3D cadastre information through open platforms (VWorld) and to represent efficiently, which is able to improve the quality of spatial information service contents for the public convenience as well as to widen utilization of information.

Land cover classification using LiDAR intensity data and neural network

  • Minh, Nguyen Quang;Hien, La Phu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • LiDAR technology is a combination of laser ranging, satellite positioning technology and digital image technology for study and determination with high accuracy of the true earth surface features in 3 D. Laser scanning data is typically a points cloud on the ground, including coordinates, altitude and intensity of laser from the object on the ground to the sensor (Wehr & Lohr, 1999). Data from laser scanning can produce products such as digital elevation model (DEM), digital surface model (DSM) and the intensity data. In Vietnam, the LiDAR technology has been applied since 2005. However, the application of LiDAR in Vietnam is mostly for topological mapping and DEM establishment using point cloud 3D coordinate. In this study, another application of LiDAR data are present. The study use the intensity image combine with some other data sets (elevation data, Panchromatic image, RGB image) in Bacgiang City to perform land cover classification using neural network method. The results show that it is possible to obtain land cover classes from LiDAR data. However, the highest accurate classification can be obtained using LiDAR data with other data set and the neural network classification is more appropriate approach to conventional method such as maximum likelyhood classification.