DOI QR코드

DOI QR Code

Risk Evaluation and Analysis on Simulation Model of Fire Evacuation based on CFD - Focusing on Incheon Bus Terminal Station

CFD기반 화재 대피 시뮬레이션 모델을 적용한 위험도 평가 분석 -인천터미널역 역사를 대상으로

  • Kim, Min Gyu (Dept. of GeoInformatic Engineering, Inha University) ;
  • Joo, Yong Jin (Aerial GeoInformatics, Inha Technical College) ;
  • Park, Soo Hong (Dept. of GeoInformatic Engineering, Inha University)
  • Received : 2013.09.03
  • Accepted : 2013.12.29
  • Published : 2013.12.31

Abstract

Recently, the research to visualize and to reproduce evacuation situations such as terrorism, the disaster and fire indoor space has been come into the spotlight and designing a model for interior space and reliable analysis through safety evaluation of the life is required. Therefore, this paper aims to develop simulation model which is able to suggest evacuation route guidance and safety analysis by considering the major risk factor of fire in actual building. First of all, we designed 3D-based fire and evacuation model at a subway station building in Incheon and performed fire risk analysis through thermal parameters on the basis of interior materials supplied by Incheon Transit Corporation. In order to evaluate safety of a life, ASET (Available Safe Egress Time), which is the time for occupants to endure without damage, and RSET (Required Safe Egress Time) are calculated through evacuation simulation by Fire Dynamics Simulator. Finally, we can come to the conclusion that a more realistic safety assessment is carried out through indoor space model based on 3-dimension building information and simulation analysis applied by safety guideline for measurement of fire and evacuation risk.

최근 실내 공간에서의 재난, 화재와 테러 등 대피상황을 재현하여 이를 가시화하기 위한 연구가 주목 받고 있으며, 실내 공간에 대한 모델을 설계하고 인명 안전 평가를 통한 신뢰성 있는 분석이 요구되고 있다. 이에 본 연구에서는 실제적인 건물 화재 위험 요인을 고려하여 피난 안전성 분석과 피난 경로 안내가 가능한 시뮬레이션 모델을 개발하고자 하였다. 이를 위해 인천터미널역 역사를 대상으로 3차원 화재 및 피난 모델을 설계하고, 실내 내장재의 재질을 바탕으로 열 매개변수와 화재 인지 장치를 이용하여 화재 위험 분석을 수행하였다. 둘째, 인명안전을 위한 평가에 있어 화재 시뮬레이션인 FDS(Fire Dynamics Simulator)와 피난 시뮬레이션을 통해 재실자가 인체에 손상 없이 견딜 수 있는 피난허용시간(ASET: Available Safe Egress Time)을 산출하였다. 또한 화재를 감지하고 안전한 장소까지 완전하게 피난하는데 소요되는 피난요구시간(RSET: Required Safe Egress Time)을 계산하고 이를 비교 분석하였다. 결과적으로 연구대상의 3차원 공간적인 정보를 기반으로 한 실내 공간 모델과, 고시된 안전기준을 반영한 열차 내 화재 및 피난 위험도 측정 시뮬레이션 분석을 통해 보다 실제적인 안전성 평가를 수행 할 수 있었다.

Keywords

References

  1. Hong, W. H; Jeon, G. Y. 2005, A study on safe egress countermeasure in Underground Space through the Analyzing survivors' exit patterns of Daegu city subway arson, Journal of the architectural institute of Korea, 21(1):235-242.
  2. Jang, Y. J; Kim, H. B; Lee, C. H; Jung, W. S. 2008, The Study on Fire Phenomena in The Deeply Underground Subway Station, Journal of the Korean Society for Railway, June 1760-1767.
  3. Jeon, H. J; Choi, Y. S; Choo, H. L. 2010, A Numerical Study for the Atrium Smoke Control by Fire Shutter and Evacuation, Korean Institute of Fire Science&Engineering, 24(5):50-59.
  4. Kim, B. C; Kim, S. J; Kim, G. G; Lee, J. H; Kwon, Y. J. 2011, Simulation analysis for evacuation safety countermeasure in underground facilities, 2011(4):100-105.
  5. Kim, J. H; Yoo, B. J; Hwang, E. K; Youn, H. J. 2012, Comparison of Experiment and Egress Modeling for Bottleneck Effect, 28(1):93-100.
  6. Michael, B; Dmitry, D; David, K. 2010, Optimization of Smoke Management System in Short Transportation Tunnels, Fourth International Symposium on Tunnel Safety and Security, March 545-548.
  7. Min, S. H. 2012, A Study on the Evacuation Risk of Simultaneous Fires from Exterior, Korean Institute of Fire Science&Engineering, 26(4):48-54. https://doi.org/10.7731/KIFSE.2012.26.4.048
  8. MOLIT, 2010, Engineering instructions of Urban railway station, Transfer and Convenient facilities.
  9. National Emergency Management. 2011, A Method and Standards for performance based fire safety design of the fire protection system.
  10. NFPA, 2000, "the SFPE handbook of fire protection engineering" NFPA Third Edition.
  11. Kevin, M; Randall, M; Simo, H; Jason, F. 2010, Fire Dynamics Simulator (Version 5) User''s Guide.
  12. Kevin, M; Howard, B; Ronald R; William, M; Randall, M. 2010, Fire Dynamics Simulator (Version 5) Technical Reference Guide.
  13. Park, S. J; Lee, J. S; Jung, E. H; Jeon, H. J; Park, S. B. 2007, Walking speed and stride length by age for the study, 2007 Fall Conference of Ergonomics Society of Korea, November 430-434.
  14. Park, K. J; Lee, K. J; Lee, J. H; Shin, D., I. 2011, Smoke Control According to the Ventilation Capacity in Subway Tunnel Fire : I. FDS Simulation, The Korean Institute For Gas, 15(3):31-38. https://doi.org/10.7842/kigas.2011.15.3.031
  15. Philip, J. D. 2002, The SFPE handbook of fire protection engineering 3rd edition., Society of Fire Protection Engineers and National Fire Protection Association.
  16. Rie, D. H. 2004, A Study of Heat and Smoke Exhaust to Subway Tunnel Direction, 2004, Journal of the Korean Society of Safety, 19(3):1-8.
  17. Size Korea, http://sizekorea.kats.go.kr/.
  18. Sonh, Y. S. 2008, Analysis of Heat and Smoke Behavior using Fire Dynamics Simulator in the Subway Fires, Myongji University Master's Thesis.
  19. Thunderhead Engineering. 2011, Pathfinder User Manual.
  20. Yuan, J. P; Fang Z; Tang Z; Sun J. Y. 2011, Performance-Based Fire Safety Assessment of City Underwater Tunnel, The 5th Conference on Performance-based Fire and Fire Protection Engineering, Procedia Engineering, 11:86-90.

Cited by

  1. 소방취약지 모델의 구성과 정립프로세스 논의 vol.22, pp.3, 2013, https://doi.org/10.12672/ksis.2014.22.3.071