• Title/Summary/Keyword: 3D elasticity

Search Result 237, Processing Time 0.024 seconds

Shear center for elastic thin-walled composite beams

  • Pollock, Gerry D.;Zak, Adam R.;Hilton, Harry H.;Ahmad, M. Fouad
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.91-103
    • /
    • 1995
  • An analysis to determine shear centers for anisotropic elastic thin-walled composite beams, cantilevered and loaded transversely at the free end is presented. The shear center is formulated based on familiar strength of material procedures analogous to those for isotropic beams. These procedures call for a balancing of torsional moments on the cross sectional surface and lead to a condition of zero resultant torsional couple. As a consequence, due the presence of anisotropic coupling, certain non-classical effects are manifested and are illustrated in two example problems. The most distinguishing result is that twisting may occur for composite beams even if shear forces are applied at the shear center. The derived shear center locations do not depend on any specific anisotropic bending theories per se, but only on the values of bending and shear stresses which such theories produce.

Forced vibration of the hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.199-218
    • /
    • 2019
  • This paper studies the forced vibration of the hydro-elastic system consisting of the anisotropic (orthotropic) plate, compressible viscous fluid and rigid wall within the scope of the exact equations and relations of elastodynamics for anisotropic bodies for describing of the plate motion, and with utilizing the linearized exact Navier-Stokes equations for describing of the fluid flow. For solution of the corresponding boundary value problem it is employed time-harmonic presentation of the sought values with respect to time and the Fourier transform with respect to the space coordinate on the coordinate axis directed along the plate length. Numerical results on the pressure acting on the interface plane between the plate and fluid are presented and discussed. The main aim in this discussion is focused on the study of the influence of the plate material anisotropy on the frequency response of the mentioned pressure. In particular, it is established that under fixed values of the shear modulus of the plate material a decrease in the values of the modulus of elasticity of the plate material in the direction of plate length causes to increase of the absolute values of the interface pressure. The numerical results are presented not only for the viscous fluid case but also for the inviscid fluid case.

Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation

  • Liang, Xiujuan;Ji, Haixu
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.267-280
    • /
    • 2021
  • The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.

Effect of $Angelica^{(R)}$ against Skin Photo-aging ($Angelica^{(R)}$의 피부 광노화에 대한 효과)

  • Jin, Mu-Hyun;Jung, Min-Hwan;Lim, Young-Hee;Lee, Sang-Hwa;Kang, Sang-Jin;Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.3 s.52
    • /
    • pp.227-235
    • /
    • 2005
  • Skin aging is not a disease nor an abnormal phenomenon but a collection of degenerative changes with age, characterized by skin dryness, wrinkle formation, and loss of skin elasticity. The skin wrinkles are caused by either genetically predisposed factors or environmental factors such as UV irradiation or physical/chemical stimulus. The histological manifestations of wrinkles are changes in both amount and integrity of elastic and collagen fibers. Here we report the isolation and characterization of 3 active compounds, prangenidin, 8-hydroxybergapten, and xanthotoxol from Angelica dahurica root. The anti-wrinkle activities of these compounds were also investigated.

Effects of Naked Barley Starch on Properties of Fish Surimi Mixture for 3D Printing (쌀보리 전분의 첨가가 수리미 혼합물의 3D 프린팅 적합성에 미치는 영향)

  • Ha-Young Lee;Hyeon-Ji Yu;Sang-Min Lee;Hyun-Sik Na;Dong-Hyeon Kim;Go-Wun Seo;Chang-Hyeon Ko;Seon-Woo Park;Hyung-Wook Choi;Ye-Jin Choi;Mi Jeong Jo;Dong-Woo Kim;Dong-Hyun Ahn
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.109-115
    • /
    • 2024
  • This study investigated the effects of various naked barley starch contents (0, 0.67, 1.34, 2.0, and 2.67 wt%) in surimi mixtures for 3D printing. Adding starch to surimi altered its texture, potentially reducing production costs. Unheated surimi became less firm with higher starch content. After heating, there was an increase in hardness, adhesiveness, springiness, cohesiveness, gumminess, chewiness, and resilience, peaking at 1.34 wt% starch. Compared to the negative control, starch-added heated surimi had a tougher texture. The color values (L*, a*, and b*) decreased after heating, with no significant change in shearing force with increasing starch content. Sensory evaluation indicated improved smell, texture, hardness, elasticity, and preference over the negative control. Higher starch content increased hardness for 3D printing suitability with no significant difference above 1.34 wt% starch indicating this is the most appropriate content. Naked barley starch enhanced surimi strength without affecting smell and preference, suggesting it as a potential surimi additive.

Transdermal Delivery of Quercetin Using Elastic Liposomes: Preparation, Characterization and In Vitro Skin Permeation Study (탄성 리포좀을 사용한 쿼세틴의 경피 전달: 제조, 특성 그리고 In Vitro 피부 투과 연구)

  • Park, Soo Nam;Lim, Myoung Sun;Park, Min A;Kwon, Soon Sik;Han, Seat Byeol
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.705-711
    • /
    • 2012
  • In this study, the elastic liposome consisted of egg phospholipids and edge activator ($Tego^{(R)}$ care 450) was prepared in order to supplement the defect of the conventional liposome. We prepared elastic liposome containing quercetin, known as natural antioxidant, and evaluated the vesicles size, elasticity, loading efficiency, stability, and in vitro skin permeation. The mean diameter of quercetin loaded elastic liposome formulations ranged between 208.2~303.4 nm and loading efficiency was observed 64.1~87.5%. The highest loading efficiency (87.5%) and deformability (28.3) were observed at the optimal ratio of 90 : 10 (egg phospholipids : $Tego^{(R)}$ care 450) among 0.1% quercetin loaded elastic liposome formulations. The elastic liposome formulation was selected for further transdermal permeation study. The elastic liposome ($129.9{\mu}g/cm^2$) exhibited more skin permeability than general liposome ($114.8{\mu}g/cm^2$) and 1,3-butylene glycol ($75.1{\mu}g/cm^2$) solution. This results suggest that the elastic liposome formulation using $Tego^{(R)}$ care 450 as a major edge activator could be useful for the delivery of active ingredient through the skin transdermal.

Effects of Collagen Tripeptide Supplement on Photoaging and Epidermal Skin Barrier in UVB-exposed Hairless Mice

  • Pyun, Hee-Bong;Kim, Minji;Park, Jieun;Sakai, Yasuo;Numata, Noriaki;Shin, Jin-Yeong;Shin, Hyun-Jung;Kim, Do-Un;Hwang, Jae-Kwan
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.4
    • /
    • pp.245-253
    • /
    • 2012
  • Collagen tripeptide (CTP) is a functional food material with several biological effects such as improving dry skin and wound and bone fracture healing. This study focused on the anti-photoaging effects of CTP on a hairless mouse model. To evaluate the effects of CTP on UVB-induced skin wrinkle formation in vivo, the hairless mice were exposed to UVB radiation with oral administration of CTP for 14 weeks. Compared with the untreated UVB control group, mice treated with CTP showed significantly reduced wrinkle formation, skin thickening, and transepidermal water loss (TEWL). Skin hydration and hydroxyproline were increased in the CTP-treated group. Moreover, oral administration of CTP prevented UVB-induced MMP-3 and -13 activities as well as MMP-2 and -9 expressions. Oral administration of CTP increased skin elasticity and decreased abnormal elastic fiber formation. Erythema was also decreased in the CTP-treated group. Taken together, these results strongly suggest that CTP has potential as an anti-photoaging agent.

An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory (개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.407-418
    • /
    • 2006
  • In this paper, an efficient yet accurate stress analysis based on the first-order shear deformation theory (FSDT) is presented. The transverse shear strain energy is modified via the mixed variational theorem, so that the shear correction factors are automatically involved in the formulation. In the mixed variational formulation, the transverse stresses are taken to be functions subject to variations. The transverse shear stresses based on an efficient higher order plate theory (EHOPT, Cho and Parmerter, 1993) are utilized and modified, while the transverse normal stress is assumed to be the third-order polynomial of thickness coordinates, which satisfies both zero transverse shear stresses and prescribed surface fractions in top and bottom surfaces. On the other hand, the displacements are assumed to be those of the FSDT Resulting strain energy expressions are referred to as an EFSDTM3D that stands for an enhanced first-order shear deformation theory based on the mixed formulation for three dimensional elasticity, The developed EFSDTM3D preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure that is based on the least square minimization of in-plane stresses. Comparisons of displacements and stresses of both laminated and sandwich plates using the present theory are made with the classical FSDT, three-dimensional exact solutions, and available data in the literature.

A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams

  • Bouafia, Khadra;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Benzair, Abdelnour;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design considerations of devices that use carbon nanotubes.

Elasto-plastic Anisotropic Wood Material Model for Finite Solid Element Applications (탄소성이방성 솔리드 유한요소법 활용을 위한 목재 재료 모델 생성 연구)

  • Hong, Jung-Pyo;Kim, Chul-Ki;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • A simplified material model, which was efficiently implemented in a three-dimensional finite solid element (3D FE) analysis for wood was developed. The bi-linear elasto-plastic anisotropic material theory was adopted to describe constitutive relations of wood in three major directions including longitudinal, radial and tangential direction. The assumption of transverse isotropy was made to reduce the requisite 27 material constants to 6 independent constants including elastic moduli, yield stresses and Poisson's ratios in the parallel, and perpendicular to grain directions. The results of Douglas fir compression tests in the three directions were compared to the 3D FE simulation incorporated with the wood material model developed in this study. Successful agreements of the results were found in the load-deformation curves and the permanent deformations. Future works and difficulties expected in the advanced application of the model were discussed.