• Title/Summary/Keyword: 3D digital design

Search Result 837, Processing Time 0.041 seconds

Prediction of the optimum cutting condition of TBM disc cutter in Korean granite by the linear cutting test (선형절삭시험에 의한 TBM 디스크 커터의 최적 절삭조건 예측)

  • Park, Gwan-In;Jang, Su-Ho;Choe, Sun-Uk;Jeon, Seok-Won
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.03a
    • /
    • pp.217-236
    • /
    • 2006
  • In this study, the LCM was applied as the preliminary study for the cutterhead design of TBM and the drilling performance evaluation. The optimum cutting condition is obtained from the LCM tests and the effects of the design factors of IBM cutterhead, such as penetration depth and cutter spacing, on drilling performance are estimated. In this study, hence, to predict the accurate performance of TBM, instead of one-dimensional penetration depth applied in existing studies, three-dimensional cutting volume was quantified and measured. For this, the digital photogrammetry technique was applied to the LCM tests. Also, AUTODYN 2D was applied to investigate the applicability of the numerical analysis technique to simulate the cutting process of rock by the TBM disc cutter.

  • PDF

Apparel Pattern CAD Education Based on Blended Learning for I-Generation (I-세대의 어패럴캐드 교육을 위한 블렌디드 러닝 활용 제안)

  • Choi, Young Lim
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.766-775
    • /
    • 2016
  • In the era of globalization and unlimited competition, Korean universities need a breakthrough in their education system according to the changing education landscape, such as lower graduation requirements to cultivate more multi-talented convergence leaders. While each student has different learning capabilities, which results in different performance and achievements in the same class, the uniform education that most universities are currently offering fails to accommodate such differences. Blended learning, synergically combining offline and online classes, enlarges learning space and enriches learning experiences through diversified tools and materials, including multimedia. Recently, universities are increasingly adopting video contents and on-offline convergence learning strategy. Thus, this study suggests a teaching method based on blended learning to more effectively teach existing pattern CAD and virtual CAD in the Apparel Pattern CAD class. To this end, this researcher developed a teaching-learning method and curriculum according to the blended learning phase and video-based contents. The curriculum consisted of 2D CAD (SuperAlpha: Plus) and 3D CAD (CLO) software learning for 15 weeks. Then, it was loaded to the Learning Management System (LMS) and operated for 15 weeks both online and offline. The performance analysis of LMS usage found that class materials, among online postings, were viewed the most. The discussion menu most accurately depicted students' participation, and students who did not participate in discussions were estimated to check postings less than participating students. A survey on the blended learning found that students prefer digital or more digitized classes, while preferring face to face for Q&As.

Butterfly Motif Design in Contemporary Fashion Collection - Focusing on VOGUE from 2019 to 2023 - (현대 패션컬렉션에 표현된 나비모티브 디자인 분석 -2019년~2023년 VOGUE를 중심으로-)

  • Shin, Jaeyoung;Huh, Jungsun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.379-386
    • /
    • 2024
  • The purpose of this study was to pay attention to the increase in the frequency of expression of butterflies and insects, whose decrease in the number of individuals is symbolized as a measure of environmental pollution, among the various motifs of nature as we go through the COVID-19, when we realized the importance of nature. The scope of this study was limited to fashion collection fashion show photos and interview articles of online for fashion collections from 2019 to 2023. As a result of the study, 185 butterfly motivation fashion design appeared, and digital printing techniques were the most used as a type of plane expression method. Along with this, techniques such as quilting, embroidery, and beading have appeared a lot as techniques to express the planar motif of butterflies. As for the three-dimensional expression types, 3D printing, laser cutting, corsage techniques, and draping techniques showed similar proportion. It can be seen that the expressed butterfly motif had more realistic description the shape of the butterfly as it was than abstract expressions. In conclusion, it can be seen that the butterfly motif fashion design over the past five years contains a stronger message about the environment than the butterfly motif fashion in the past. It was confirmed that it is a motif with a great symbolic meaning that can convey an eco-friendly message beyond just the morphological beauty and colorful design elements of the butterfly.

A Variable-Length FFT/IFFT Processor for Multi-standard OFDM Systems (다중표준 OFDM 시스템용 가변길이 FFT/IFFT 프로세서)

  • Yeem, Chang-Wan;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.209-215
    • /
    • 2010
  • This paper describes a design of variable-length FFT/IFFT processor (VL_FCore) for OFDM-based multi-standard communication systems. The VL_FCore adopts in-place single-memory architecture, and uses a hybrid structure of radix-4 and radix-2 DIF algorithms to accommodate various FFT lengths in the range of $N=64{\times}2^k\;(0{\leq}k{\leq}7)$. To achieve both memory size reduction and the improved SQNR, a two-step conditional scaling technique is devised, which conditionally scales the intermediate results of each computational stage. The performance analysis results show that the average SQNR's of 64~8,192-point FFT's are over 60-dB. The VL_FCore synthesized with a $0.35-{\mu}m$ CMOS cell library has 23,000 gates and 32 Kbytes memory, and it can operate with 75-MHz@3.3-V clock. The 64-point and 8,192-point FFT's can be computed in $2.25-{\mu}s$ and $762.7-{\mu}s$, respectively, thus it satisfies the specifications of various OFDM-based systems.

Design and Implementation of Optical Receiving Bipolar ICs for Optical Links

  • Nam Sang Yep;Ohm Woo Young;Lee Won Seok;Yi Sang Yeou1
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.717-722
    • /
    • 2004
  • A design was done, and all characteristic of photodetectr of the web pattern type which a standard process of the Bipolar which Si PIN structure was used in this paper, and was used for the current amplifier design was used, and high-speed, was used as receiving optcal area of high altitude, and the module which had a low dark current characteristic was implemented with one chip with a base. Important area decreases an area of Ie at the time of this in order to consider an electrical characteristic and economy than the existing receiving IC, and performance of a product and confidence are got done in incense. First of all, the receiving IC which a spec, pattern of a wafer to he satisfied with the following electrical optical characteristic that produced receiving IC of 5V and structure are determined, and did one-chip is made. On the other hand, the time when AR layer of double is $Si_{3}N_{4}/SiO_{2}=1500/1800$ has an optical reflectivity of less than $10{\%}$ on an incidence optical wavelength of 660 ,and, in case of photo detector which reverse voltage made with 1.8V runs in 1.65V, an error about a change of thickness is very the thickness that can be improved surely. And, as for the optical current characteristic, about 5 times increases had the optical current with 274nA in 55nA when Pc was -27dBm. A BJT process is used, and receiving IC running electricity suitable for low voltage and an optical characteristic in minimum 1.8V with a base with two phases is made with one chip. IC of low voltage operates in 1.8V and 3.0V at the same time, and optical link receiving IC is going to be implemented

  • PDF

New Model-based IP-Level Power Estimation Techniques for Digital Circuits (디지털 회로에서의 새로운 모델 기반 IP-Level 소모 전력 추정 기법)

  • Lee, Chang-Hee;Shin, Hyun-Chul;Kim, Kyung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.42-50
    • /
    • 2006
  • Owing to the development of semiconductor processing technology, high density complex circuits can be integrated in a System-on-Chip (SoC). However, increasing energy consumption becomes one of the most important limiting factors. Power estimation at the early stage of design is essential, since design changes at lower levels may significantly lengthen the design period and increase the cost. In this paper, logic level circuits ire levelized and several levels are selected to build power model tables for efficient power estimation. The proposed techniques are applied to a set of ISCAS'85 benchmark circuits to illustrate their effectiveness. Experimental results show that significant improvement in estimation accuracy and slight improvement in efficiency are achieved when compared to those of a well-known existing method. The average estimation error has been reduced from $9.49\%\;to\;3.84\%$.

Creation of Fashion Items Using Traditional Dancheong Patterns - Focused on Bag Designs - (전통 단청문양을 활용한 패션상품 개발 - 가방 디자인을 중심으로 -)

  • Lee, Jae-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.545-557
    • /
    • 2020
  • With the increasing interest on K-fashion all over the world, it's the important time to create the items which can express the unique identity of Korea for promoting the globalization of Korean fashion. Accordingly, this study aims to suggest the modern applicability of traditional patterns by designing the bags using the Dancheong patterns(traditional multi-colored decorative painting) which can effectively express Korean images in a variety of shapes and definite visual features and then expand the scope of fashion items. To this end, this study concentrated on expressing the Dancheong patterns to fit to the modern fashion trends by re-interpreting them. The bag was designed using the laser cutting technique, without weaving or digital printing, to imbue the technical emotion and 3D effect to the patterns. In accordance with the analysis results, the features of patterns could be delicately expressed around the shaping and structuring method in terms of the design, and the scope of design for leather goods could be expanded using the laser cutting in technical aspects. For the industrial aspects, it is required to develop differentiated goods expressing the unique emotion of the Korean for globalization of Korean design.

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

Design of the 10MHz and 10W Power Source for Short Distance Wireless Power Transmission (근거리 무선 전력 전송을 위한 평형 증폭기 구조의 10MHz 10W급 전력원 설계)

  • Park, Dong-Hoon;Kim, Gui-Sung;Lim, Eun-Cheon;Park, Hye-Mi;Lee, Moon-Que
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.437-441
    • /
    • 2012
  • In this paper, we have designed and manufactured 10MHz power source for the application of short distance wireless power transmission. The designed power source consists of a DDS(direct digital synthesizer) signal generator, a buffer driver and a balanced power amplifier. Short range wireless power transmission is usually carried out by near-field inductive coupling between source and load. The distance variation between source and load gives rise to the change of load impedance of power amplifier, which has effect on the operation of power amplifier. To overcome this problem due to load variation of power amplifier, we have adopted the balanced power amplifier using the quadrature hybrid implemented by lumped capacitors and a mutually coupled coil. The experiment results show the above 40dBm output power, frequency range of 9 to 11MHz, and total DC power consumption of 36W.

A Study on the Optimum Design for LTCC Micro-Reformer: (Performance Evaluation of Various Flow Channel Structures ('LTCC를 소재로 하는 마이크로 리포머의 최적 설계에 관한 연구: (다양한 채널구조에 따른 성능변화 고찰)')

  • Chung Chan-Hwa;Oh Jeong-Hoon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.551-552
    • /
    • 2006
  • The miniature fuel cells have emerged as a promising power source for applications such as cellular phones, small digital devices, and autonomous sensors to embedded monitors or to micro-electro mechanical system (MEMS) devices. Several chemicals run candidate at a fuel in those systems, such as hydrogen. methanol, ethanol, acetic acid, and di-methyl ether (DME). Among them, hydrogen shows most efficient fuel performance. However, there are some difficulties in practical application for portable power sources. Therefore, more recently, there have been many efforts for development of micro-reformer to operate highly efficient micro fuel cells with liquid fuels such as methanol, ethanol, and DME In our experiments, we have integrated a micro-fuel processor system using low temperature co-fired ceramics (LTCC) materials. Our integrated micro-fuel processor system is containing embedded heaters, cavities, and 3D structures of micro- channels within LTCC layers for embedding catalysts (cf. Figs. 1 and 2). In the micro-channels of LTCC, we have loaded $CuO/ZnO/Al_2O_3$ catalysts using several different coating methods such as powder packing or spraying, dipping, and washing of catalyst slurry.

  • PDF