• Title/Summary/Keyword: 3D data reconstruction

Search Result 353, Processing Time 0.035 seconds

Comparative study of data selection in data integration for 3D building reconstruction

  • Nakagawa, Masafumi;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1393-1395
    • /
    • 2003
  • In this research, we presented a data integration, which integrates ultra high resolution images and complementary data for 3D building reconstruction. In our method, as the ultra high resolution image, Three Line Sensor (TLS) images are used in combination with 2D digital maps, DSMs and both of them. Reconstructed 3D buildings, correctness rate and the accuracy of results were presented. As a result, optimized combination scheme of data sets , sensors and methods was proposed.

  • PDF

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

Survey on 3D Surface Reconstruction

  • Khatamian, Alireza;Arabnia, Hamid R.
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.338-357
    • /
    • 2016
  • The recent advent of increasingly affordable and powerful 3D scanning devices capable of capturing high resolution range data about real-world objects and environments has fueled research into effective 3D surface reconstruction techniques for rendering the raw point cloud data produced by many of these devices into a form that would make it usable in a variety of application domains. This paper, therefore, provides an overview of the existing literature on surface reconstruction from 3D point clouds. It explains some of the basic surface reconstruction concepts, describes the various factors used to evaluate surface reconstruction methods, highlights some commonly encountered issues in dealing with the raw 3D point cloud data and delineates the tradeoffs between data resolution/accuracy and processing speed. It also categorizes the various techniques for this task and briefly analyzes their empirical evaluation results demarcating their advantages and disadvantages. The paper concludes with a cross-comparison of methods which have been evaluated on the same benchmark data sets along with a discussion of the overall trends reported in the literature. The objective is to provide an overview of the state of the art on surface reconstruction from point cloud data in order to facilitate and inspire further research in this area.

Deformable Surface 3D Reconstruction from a Single Image by Linear Programming

  • Ma, Wenjuan;Sun, Shusen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3121-3142
    • /
    • 2017
  • We present a method for 3D shape reconstruction of inextensible deformable surfaces from a single image. The key of our approach is to represent the surface as a 3D triangulated mesh and formulate the reconstruction problem as a sequence of Linear Programming (LP) problems. The LP problem consists of data constraints which are 3D-to-2D keypoint correspondences and shape constraints which are designed to retain original lengths of mesh edges. We use a closed-form method to generate an initial structure, then refine this structure by solving the LP problem iteratively. Compared with previous methods, ours neither involves smoothness constraints nor temporal consistency, which enables us to recover shapes of surfaces with various deformations from a single image. The robustness and accuracy of our approach are evaluated quantitatively on synthetic data and qualitatively on real data.

A data-flow oriented framework for video-based 3D reconstruction (삼차원 재구성을 위한 Data-Flow 기반의 프레임워크)

  • Kim, Albert
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.71-74
    • /
    • 2009
  • The data-flow paradigm has been employed in various application areas. It is particularly useful where large data-streams must be processed, for example in video and audio processing, or for scientific visualization. A video-based 3D reconstruction system should process multiple synchronized video streams. The system exhibits many properties that can be targeted using a data-flow approach that is naturally divided into a sequence of processing tasks. In this paper we introduce our concept to apply the data-flow approach to a multi-video 3D reconstruction system.

An efficent method of binocular data reconstruction

  • Rao, YunBo;Ding, Xianshu;Fan, Bojiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3721-3737
    • /
    • 2015
  • 3D reconstruction based on binocular data is significant to machine vision. In our method, we propose a new and high efficiency 3D reconstruction approach by using a consumer camera aiming to: 1) address the configuration problem of dual camera in the binocular reconstruction system; 2) address stereo matching can hardly be done well problem in both time computing and precision. The kernel feature is firstly proposed in calibration stage to rectify the epipolar. Then, we segment the objects in the camera into background and foreground, for which system obtains the disparity by different method: local window matching and kernel feature-based matching. Extensive experiments demonstrate our proposed algorithm represents accurate 3D model.

Reconstruction of Buildings from Satellite Image and LIDAR Data

  • Guo, T.;Yasuoka, Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.519-521
    • /
    • 2003
  • Within the paper an approach for the automatic extraction and reconstruction of buildings in urban built-up areas base on fusion of high-resolution satellite image and LIDAR data is presented. The presented data fusion scheme is essentially motivated by the fact that image and range data are quite complementary. Raised urban objects are first segmented from the terrain surface in the LIDAR data by making use of the spectral signature derived from satellite image, afterwards building potential regions are initially detected in a hierarchical scheme. A novel 3D building reconstruction model is also presented based on the assumption that most buildings can be approximately decomposed into polyhedral patches. With the constraints of presented building model, 3D edges are used to generate the hypothesis and follow the verification processes and a subsequent logical processing of the primitive geometric patches leads to 3D reconstruction of buildings with good details of shape. The approach is applied on the test sites and shows a good performance, an evaluation is described as well in the paper.

  • PDF

AUTOMATIC IDENTIFICATION OF ROOF TYPES AND ROOF MODELING USING LIDAR

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.83-86
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using LiDAR data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression). If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Based on the roof types identified in automated fashion, the 3D building reconstruction is performed. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LiDAR data and digital map could be a feasible method of modelling 3D building reconstruction.

  • PDF

Recent Trends of Weakly-supervised Deep Learning for Monocular 3D Reconstruction (단일 영상 기반 3차원 복원을 위한 약교사 인공지능 기술 동향)

  • Kim, Seungryong
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.70-78
    • /
    • 2021
  • Estimating 3D information from a single image is one of the essential problems in numerous applications. Since a 2D image inherently might originate from an infinite number of different 3D scenes, thus 3D reconstruction from a single image is notoriously challenging. This challenge has been overcame by the advent of recent deep convolutional neural networks (CNNs), by modeling the mapping function between 2D image and 3D information. However, to train such deep CNNs, a massive training data is demanded, but such data is difficult to achieve or even impossible to build. Recent trends thus aim to present deep learning techniques that can be trained in a weakly-supervised manner, with a meta-data without relying on the ground-truth depth data. In this article, we introduce recent developments of weakly-supervised deep learning technique, especially categorized as scene 3D reconstruction and object 3D reconstruction, and discuss limitations and further directions.

Hard calibration of a structured light for the Euclidian reconstruction (3차원 복원을 위한 구조적 조명 보정방법)

  • 신동조;양성우;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.183-186
    • /
    • 2003
  • A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.

  • PDF