• Title/Summary/Keyword: 3D construction

Search Result 2,806, Processing Time 0.038 seconds

The Development of Interface technology Between 3D Modeling Data and Cable Engineering Program Data (전선로 3D Modeling 데이터와 케이블 엔지니어링 데이터의 연계 기술개발)

  • Cho, Sung-Don;Yoo, Gi-Hong;Kim, Soon-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.400-401
    • /
    • 2007
  • 3D Modeling S/W인 PDS(Plant Design System)의 Electrical Raceway Modeling Software인 EE-Raceway로 작성된 DB에서 트레이, 트레이 Link, Fitting 데이터를 추출하여 케이블 엔지니어링 프로그램의 Input 자료로 활용하는 연계기술과 활용에 대하여 소개하고자 한다

  • PDF

Promotion Directions for Construction R&D in Private Sector (민간 건설기술 R&D 활성화 방안)

  • Yu, Jung-Ho;Yoo, Won-Hee;Kim, Woo-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.6
    • /
    • pp.167-177
    • /
    • 2007
  • For the continuous growth of the construction industry and the increase of the global competitiveness, research and development of construction technology is necessary. However, the R&D investment of Korean government for the construction industry is not sufficient compared with other countries and the various policies for encouraging construction R&D investment need to be improved too. This research focuses on the promotion of the construction R&D by the private sector that is one of the principal body of construction R&D and also the final user of the developed construction technology. This research suggests three promotion directions for the construction R&D by private sector; (1) the direction of creating better R&D investment climate, (2) the direction of increasing R&D investment amount, and (3) the direction of fostering R&D activities immediately.

BIM based Integration Method of Cost and Schedule Information (BIM기반 비용.일정 통합관리 방안에 관한 연구)

  • Jung, Do-Young;Baek, Yuong-In
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.321-325
    • /
    • 2008
  • 3D and BIM technology are presumed to be used more and more in the construction industry. The scope of this paper arose from a general wondering of how the constructor in general can benefit from the use of 3D models. Presented herewith is the first application of BIM in Korea to a actual bridge construction site located in Cheongpoong in Chooncheongbook-Do. This paper tries to integrate design, cost and schedule under location-based conditions with industry-specific solution for 3D modeling. 292 activities constitute the cable-stayed bridge of 442m long with a main span of 327m long. Integration of 3D model, cost and schedule is shown by comparing the measurements of works at a specific time by use of 2 different construction sequencing scenarios and cost breakdown structures.

  • PDF

A Study on 3D Geospatial Information Model based Influence Factor Management Application in Earthwork Plan (3차원 지형공간정보모델기반 토공사 계획 및 관리에 미치는 영향요인 관리 애플리케이션 연구)

  • Park, Jae-woo;Yun, Won Gun;Kim, Suk Su;Song, Jae Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.125-135
    • /
    • 2019
  • In recent years, the digital transformation age represented by the "Fourth Industrial Revolution", which is a universalization of digitalization across all industries, has become a reality. In the construction sector in 2018, the Ministry of Land, Infrastructure and Transport established the Smart Construction 2025 vision and established the 'Smart Construction Technology Roadmap' aiming to complete construction automation by 2030. Especially, in the construction stage, field monitoring technology using drones is needed to support construction equipment automation and on-site control, and a 3D geospatial information model can be utilized as a base tool for this. The purpose of this study is to investigate the factors affecting earthworks work in order to manage changes in site conditions and improve communication between managers and workers in the earthworks plan, which has a considerable part in terms of construction time and cost as a single type of work. Based on this, field management procedures and applications were developed.

Methodologies for Effective Construction Information Management of Railway Facilities through Linking 4D CAD to IETM (4D CAD와 IETM 연계를 통한 철도시설의 효율적인 공사정보관리 방안)

  • Kang, Leen-Seok;Moon, Hyoun-Seok;Park, Seo-Young;Kim, Hyun-Soo;Ahn, Jae-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.139-142
    • /
    • 2008
  • Construction Management by using 4D CAD system analyzes operations information based on 3D and 4D objects. But it is difficult to provide a variety of documents linked by 4D objects in a lump from 4D CAD system based on visual object, and to get an optimal decision-making information to conduct business. Therefore, it is necessary to construct effective construction information management systems and to organize integrated information through linking non-objects to objects. This study suggests methodologies of effective construction management for railway facilities through building of framework for practical application and methodologies to link 4D objects to IETM documents. Accordingly, it is possible to establish a systematic decision-making for an effective construction management of railway facilities, and this provide integrated methodology for linking non-objects to objects.

  • PDF

Process of Using BIM for Small-Scale Construction Projects - Focusing on the Steel-frame Work - (소규모 건축공사의 BIM 정보 활용을 위한 프로세스 제안 - 철골공사 중심으로 -)

  • Kim, Jin-Kwang;Yoo, Moo-Young;Ham, Nam-Hyuk;Kim, Jae-Jun;Choi, Chang-Shik
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The current study focused on the utilization of building information modeling (BIM) data in steel-frame structures, which help to reduce project durations because they employ prefabricated structural members that are assembled on-site. In addition, a business process model was proposed using BIM data collected during the preconstruction, structural steel fabrication, and on-site construction phases of an actual steel-frame project. The ultimate expectation is that BIM data support at each phase, as well as the increased understanding among project participants, will result in an increase in project management productivity. The results from the current study are summarized as follows: To implement a BIM capable of application to steel-frame projects and data utilization, existing theories were studied to develop the construction project steps, both generally into the preconstruction (A1), steel fabrication (A2), and on-site construction phases, (A3) and specifically into 19 BIM-applicable phases. Based on the derived BIM-applicable phases, the model elements of the BIM object were identified, and the shortcomings of existing steel-frame projects were ameliorated, resulting in an improved data flow model. Moreover, for the proposed BIM data flow to progress efficiently, the BIM specialist needs to be well-acquainted with the phase-specific three-dimensional (3D) model output, and the infrastructure to construct an error-free 3D model must be provided. Based on the actual construction example, the BIM data utilized steel-frame projects - via production reports, clash checks, two-dimensional (2D) drawings, four-dimensional (4D) simulations, and 3D scanning - to make cooperation and communication among participants easier.

A Study on a Technique for Simplifying the Connection of a 3D Model and Schedule Information for 4D Simulation (4D 시뮬레이션을 위한 3D 모델 및 공정 정보의 연계 간소화 기법 연구)

  • Park, Sang Mi;Lee, Jae Hee;Yoon, Hyeong Seok;Hwang, Jae Yoeng;Kang, Hyo Jeong;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.861-868
    • /
    • 2022
  • A key use of applying building information modeling (BIM) to the construction stage of a project is to help identify construction obstacles and to visualize construction status according to the progress of the construction schedule. When employing 4D simulation for this purpose, start and finish dates for each activity and a 3D model of the activity must be prepared. In this work, in order to simplify the configuration of a 4D model, minimum attribute information of the BIM model produced in the design stage was used to construct a system that generated activity information in the construction stage using a clustering algorithm. Its usefulness as actual schedule management information was then analyzed.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.

Development of Automation Technology for Structural Members Quantity Calculation through 2D Drawing Recognition (2D 도면 인식을 통한 부재 물량 산출 자동화 기술 개발)

  • Sunwoo, Hyo-Bin;Choi, Go-Hoon;Heo, Seok-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.227-228
    • /
    • 2022
  • In order to achieve the goal of cost management, which is one of the three major management goals of building production, this paper introduces an approximate cost estimating automation technology in the design stage as the importance of predicting construction costs increases. BIM is used for accurate estimating, and the quantity of structural members and finishing materials is calculated by creating a 3D model of the actual building. However, only 2D basic design drawings are provided when making an estimating. Therefore, for accurate quantity calculation, digitization of 2D drawings is required. Therefore, this research calculates the quantity of concrete structural members by calculating the area for the recognition area through 2D drawing recognition technology incorporating computer vision. It is judged that the development technology of this research can be used as an important decision-making tool when predicting the construction cost in the design stage. In addition, it is expected that 3D modeling automation and 3D structural analysis will be possible through the digitization of 2D drawings.

  • PDF

A measure for activating BIM by actual application analysis of integrated utilization process of quantity, process(4D), and construction cost(5D) in view of life-cycle

  • Lee, Jae-Hong;Kim, Tae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.1-15
    • /
    • 2020
  • In this paper, we propose a novel method for converting the existing 2D processes in the design and construction phase of civil engineering, to the future BIM-based processes. First, we compare and analyze the actual application processes of the outputs of the existing 2D method and the outputs of the 3D BIM method, for the whole process of BIM design of earthworks and road structures and integrated utilization of quantity, process(4D) and construction cost(5D), in view of life-cycle. The proposed method acquire the outputs of the design phase integrating IFC international common standard file information and CBS/OBS/WBS standard classification scheme information, and acquire the outputs of the construction stage by using an integrated utilization module for quantity, process(4D) and construction cost(5D). Ultimately, we intend to commercialize the step by step technologies for BIM design and construction in civil engineering by using the proposed method.