• Title/Summary/Keyword: 3D calibration

Search Result 666, Processing Time 0.024 seconds

Multiple Camera Calibration for Panoramic 3D Virtual Environment (파노라믹 3D가상 환경 생성을 위한 다수의 카메라 캘리브레이션)

  • 김세환;김기영;우운택
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.2
    • /
    • pp.137-148
    • /
    • 2004
  • In this paper, we propose a new camera calibration method for rotating multi-view cameras to generate image-based panoramic 3D Virtual Environment. Since calibration accuracy worsens with an increase in distance between camera and calibration pattern, conventional camera calibration algorithms are not proper for panoramic 3D VE generation. To remedy the problem, a geometric relationship among all lenses of a multi-view camera is used for intra-camera calibration. Another geometric relationship among multiple cameras is used for inter-camera calibration. First camera parameters for all lenses of each multi-view camera we obtained by applying Tsai's algorithm. In intra-camera calibration, the extrinsic parameters are compensated by iteratively reducing discrepancy between estimated and actual distances. Estimated distances are calculated using extrinsic parameters for every lens. Inter-camera calibration arranges multiple cameras in a geometric relationship. It exploits Iterative Closet Point (ICP) algorithm using back-projected 3D point clouds. Finally, by repeatedly applying intra/inter-camera calibration to all lenses of rotating multi-view cameras, we can obtain improved extrinsic parameters at every rotated position for a middle-range distance. Consequently, the proposed method can be applied to stitching of 3D point cloud for panoramic 3D VE generation. Moreover, it may be adopted in various 3D AR applications.

Hard calibration of a structured light for the Euclidian reconstruction (3차원 복원을 위한 구조적 조명 보정방법)

  • 신동조;양성우;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.183-186
    • /
    • 2003
  • A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.

  • PDF

Calibration of Structured Light Vision System using Multiple Vertical Planes

  • Ha, Jong Eun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.438-444
    • /
    • 2018
  • Structured light vision system has been widely used in 3D surface profiling. Usually, it is composed of a camera and a laser which projects a line on the target. Calibration is necessary to acquire 3D information using structured light stripe vision system. Conventional calibration algorithms have found the pose of the camera and the equation of the stripe plane of the laser under the same coordinate system of the camera. Therefore, the 3D reconstruction is only possible under the camera frame. In most cases, this is sufficient to fulfill given tasks. However, they require multiple images which are acquired under different poses for calibration. In this paper, we propose a calibration algorithm that could work by using just one shot. Also, proposed algorithm could give 3D reconstruction under both the camera and laser frame. This would be done by using newly designed calibration structure which has multiple vertical planes on the ground plane. The ability to have 3D reconstruction under both the camera and laser frame would give more flexibility for its applications. Also, proposed algorithm gives an improvement in the accuracy of 3D reconstruction.

3D Calibration Method on Large-Scale Hull Pieces Profile Measurement using Multi-Slit Beams (선박용 곡판형상의 실시간 측정을 위한 다중 슬릿빔 보정법)

  • Kim, ByoungChang;Lee, Se-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.968-973
    • /
    • 2013
  • In the transportation industry, especially in the shipbuilding process, 3D surface measurement of large-scale hull pieces is needed for fabrication and assembly. We suggest an efficient method for checking the shape of curved plates under the forming operation with short time by measuring 3D profiles along the multi lines of the target surface. For accurate profile reconstruction, 2D camera calibration and 3D calibration using gauge blocks were performed. The evaluation test shows that the measurement accuracy is within the boundary of tolerance required in the shipbuilding process.

Design of a 1.2V 7-bit 800MSPS Folding-Interpolation A/D Converter with Offset Self-Calibration (Offset Self-Calibration 기법을 적용한 1.2V 7-bit 800MSPS Folding-Interpolation A/D 변환기의 설계)

  • Kim, Dae-Yun;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.18-27
    • /
    • 2010
  • In this paper, a 1.2V 7-bit 1GSPS A/D converter with offset self-calibration is proposed. The proposed A/D converter structure is based on the folding-interpolation whose folding rate is 2, interpolation rate is 8. Further, for the purpose of improving the chip performance, an offset self-calibration circuit is used. The offset self-calibration circuit reduce the variation of the offset-voltage,due to process mismatch, parasitic resistor, and parasitic capacitance. The chip has been fabricated with a 1.2V 65nm 1-poly 6-metal CMOS technology. The effective chip area is $0.87mm^2$ and the power dissipates about 110mW at 1.2V power supply. The measured SNDR is about 39.1dB when the input frequency is 250MHz at 800MHz sampling frequency. The measured SNDR is 3dB higher than the same circuit without any calibration.

Development of a Camera Self-calibration Method for 10-parameter Mapping Function

  • Park, Sung-Min;Lee, Chang-je;Kong, Dae-Kyeong;Hwang, Kwang-il;Doh, Deog-Hee;Cho, Gyeong-Rae
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.183-190
    • /
    • 2021
  • Tomographic particle image velocimetry (PIV) is a widely used method that measures a three-dimensional (3D) flow field by reconstructing camera images into voxel images. In 3D measurements, the setting and calibration of the camera's mapping function significantly impact the obtained results. In this study, a camera self-calibration technique is applied to tomographic PIV to reduce the occurrence of errors arising from such functions. The measured 3D particles are superimposed on the image to create a disparity map. Camera self-calibration is performed by reflecting the error of the disparity map to the center value of the particles. Vortex ring synthetic images are generated and the developed algorithm is applied. The optimal result is obtained by applying self-calibration once when the center error is less than 1 pixel and by applying self-calibration 2-3 times when it was more than 1 pixel; the maximum recovery ratio is 96%. Further self-correlation did not improve the results. The algorithm is evaluated by performing an actual rotational flow experiment, and the optimal result was obtained when self-calibration was applied once, as shown in the virtual image result. Therefore, the developed algorithm is expected to be utilized for the performance improvement of 3D flow measurements.

Hand/Eye calibration of Robot arms with a 3D visual sensing system (3차원 시각 센서를 탑재한로봇의 Hand/Eye 캘리브레이션)

  • 김민영;노영준;조형석;김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.76-76
    • /
    • 2000
  • The calibration of the robot system with a visual sensor consists of robot, hand-to-eye, and sensor calibration. This paper describe a new technique for computing 3D position and orientation of a 3D sensor system relative to the end effect of a robot manipulator in an eye-on-hand robot configuration. When the 3D coordinates of the feature points at each robot movement and the relative robot motion between two robot movements are known, a homogeneous equation of the form AX : XB is derived. To solve for X uniquely, it is necessary to make two robot arm movements and form a system of two equation of the form: A$_1$X : XB$_1$ and A$_2$X = XB$_2$. A closed-form solution to this system of equations is developed and the constraints for solution existence are described in detail. Test results through a series of simulation show that this technique is simple, efficient, and accurate fur hand/eye calibration.

  • PDF

A New Linear Explicit Camera Calibration Method (새로운 선형의 외형적 카메라 보정 기법)

  • Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.66-71
    • /
    • 2014
  • Vision is the most important sensing capability for both men and sensory smart machines, such as intelligent robots. Sensed real 3D world and its 2D camera image can be related mathematically by a process called camera calibration. In this paper, we present a novel linear solution of camera calibration. Unlike most existing linear calibration methods, the proposed technique of this paper can identify camera parameters explicitly. Through the step-by-step procedure of the proposed method, the real physical elements of the perspective projection transformation matrix between 3D points and the corresponding 2D image points can be identified. This explicit solution will be useful for many practical 3D sensing applications including robotics. We verified the proposed method by using various cameras of different conditions.

Convenient View Calibration of Multiple RGB-D Cameras Using a Spherical Object (구형 물체를 이용한 다중 RGB-D 카메라의 간편한 시점보정)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.309-314
    • /
    • 2014
  • To generate a complete 3D model from depth images of multiple RGB-D cameras, it is necessary to find 3D transformations between RGB-D cameras. This paper proposes a convenient view calibration technique using a spherical object. Conventional view calibration methods use either planar checkerboards or 3D objects with coded-pattern. In these conventional methods, detection and matching of pattern features and codes takes a significant time. In this paper, we propose a convenient view calibration method using both 3D depth and 2D texture images of a spherical object simultaneously. First, while moving the spherical object freely in the modeling space, depth and texture images of the object are acquired from all RGB-D camera simultaneously. Then, the external parameters of each RGB-D camera is calibrated so that the coordinates of the sphere center coincide in the world coordinate system.