• Title/Summary/Keyword: 3D Vision Inspection

Search Result 46, Processing Time 0.025 seconds

Compensation of Installation Errors in a Laser Vision System and Dimensional Inspection of Automobile Chassis

  • Barkovski Igor Dunin;Samuel G.L.;Yang Seung-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.437-446
    • /
    • 2006
  • Laser vision inspection systems are becoming popular for automated inspection of manufactured components. The performance of such systems can be enhanced by improving accuracy of the hardware and robustness of the software used in the system. This paper presents a new approach for enhancing the capability of a laser vision system by applying hardware compensation and using efficient analysis software. A 3D geometrical model is developed to study and compensate for possible distortions in installation of gantry robot on which the vision system is mounted. Appropriate compensation is applied to the inspection data obtained from the laser vision system based on the parameters in 3D model. The present laser vision system is used for dimensional inspection of car chassis sub frame and lower arm assembly module. An algorithm based on simplex search techniques is used for analyzing the compensated inspection data. The details of 3D model, parameters used for compensation and the measurement data obtained from the system are presented in this paper. The details of search algorithm used for analyzing the measurement data and the results obtained are also presented in the paper. It is observed from the results that, by applying compensation and using appropriate algorithms for analyzing, the error in evaluation of the inspection data can be significantly minimized, thus reducing the risk of rejecting good parts.

Linear System Depth Detection using Retro Reflector for Automatic Vision Inspection System (자동 표면 결함검사 시스템에서 Retro 광학계를 이용한 3D 깊이정보 측정방법)

  • Joo, Young Bok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.77-80
    • /
    • 2022
  • Automatic Vision Inspection (AVI) systems automatically detect defect features and measure their sizes via camera vision. It has been populated because of the accuracy and consistency in terms of QC (Quality Control) of inspection processes. Also, it is important to predict the performance of an AVI to meet customer's specification in advance. AVI are usually suffered from false negative and positives. It can be overcome by providing extra information such as 3D depth information. Stereo vision processing has been popular for depth extraction of the 3D images from 2D images. However, stereo vision methods usually take long time to process. In this paper, retro optical system using reflectors is proposed and experimented to overcome the problem. The optical system extracts the depth without special SW processes. The vision sensor and optical components such as illumination and depth detecting module are integrated as a unit. The depth information can be extracted on real-time basis and utilized and can improve the performance of an AVI system.

Adjustment Algorithms for the Measured Data of Stereo Vision Methods for Measuring the Height of Semiconductor Chips (반도체 칩의 높이 측정을 위한 스테레오 비전의 측정값 조정 알고리즘)

  • Kim, Young-Doo;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Lots of 2D vision algorithms have been applied for inspection. However, these 2D vision algorithms have limitation in inspection applications which require 3D information data such as the height of semiconductor chips. Stereo vision is a well known method to measure the distance from the camera to the object to be measured. But it is difficult to apply for inspection directly because of its measurement error. In this paper, we propose two adjustment methods to reduce the error of the measured height data for stereo vision. The weight value based model is used to minimize the mean squared error. The average value based model is used with simple concept to reduce the measured error. The effect of these algorithms has been proved through the experiments which measure the height of semiconductor chips.

3D Vision Inspection Algorithm Using the Geometrical Pattern Matching (기하학적 패턴 매칭을 이용한 3차원 비전 검사 알고리즘)

  • 정철진;허경무
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2533-2536
    • /
    • 2003
  • In this paper, we suggest the 3D Vision Inspection Algorithm which is based on the external shape feature, and is able to recognize the object. Because many objects made by human have the regular shape, if we posses the database of pattern and we recognize the object using the database of the object's pattern, we could inspect the objects of many fields. Thus, this paper suggest the 3D Vision inspection Algorithm using the Geometrical Pattern Matching by making the 3D database.

  • PDF

3D Vision Inspection Algorithm using Geometrical Pattern Matching Method (기하학적 패턴 매칭을 이용한 3차원 비전 검사 알고리즘)

  • 정철진;허경무;김장기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.54-59
    • /
    • 2004
  • We suggest a 3D vision inspection algorithm which is based on the external shape feature. Because many electronic parts have the regular shape, if we have the database of pattern and can recognize the object using the database of the object s pattern, we can inspect many types of electronic parts. Our proposed algorithm uses the geometrical pattern matching method and 3D database on the electronic parts. We applied our suggested algorithm fer inspecting several objects including typical IC and capacitor. Through the experiments, we could find that our suggested algorithm is more effective and more robust to the inspection environment(rotation angle, light source, etc.) than conventional 2D inspection methods. We also compared our suggested algorithm with the feature space trajectory method.

A 3D Vision Inspection Method using One Camera (1대의 카메라를 이용한 3차원 비전 검사 방법)

  • Jung Cheol-Jin;Huh Kyung Moo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, we suggest a 3D vision inspection method which use only one camera. If we have the database of pattern and can recognize the object, and also estimate the rotated shape of the parts, we can inspect the parts using only one image. We used the 3D database and the 2D geometrical pattern matching, and the rotation transition theory about the algorithm. As the results, we could have the capability of the recognition and inspection of the rotated object through the estimation of rotation an81e. We applied our suggested algorithm to the inspection of typical IC and capacitor, and compared our suggested algorithm with the conventional 2D inspection method and the feature space trajectory method.

3-Dimensional Micro Solder Ball Inspection Using LED Reflection Image

  • Kim, Jee Hong
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.39-45
    • /
    • 2019
  • This paper presents an optical technique for the three-dimensional (3D) shape inspection of micro solder balls used in ball-grid array (BGA) packaging. The proposed technique uses an optical source composed of spatially arranged light-emitting diodes (LEDs) and the results are derived based on the specular reflection characteristics of the micro solder balls for BGA A vision system comprising a camera and LEDs is designed to capture the reflected images of multiple solder balls arranged arbitrarily on a tray and the locations of the LED point-light-source reflections in each ball are determined via image processing, for shape inspection. The proposed methodology aims to determine the presence of defects in 3D BGA shape using the statistical information of the relative positions of multiple BGA balls, which are included in the image. The presence of the BGA balls with large deviations in relative position imply the inconsistencies in their shape. Experiments were conducted to verify that the proposed method could be applied to inspection without sophisticated mechanism and productivity problem.

Development of ${\mu}BGA$ Solder Ball Inspection Algorithm (${\mu}BGA$ 납볼 검사 알고리즘 개발)

  • 박종욱;양진세;최태영
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.139-142
    • /
    • 2000
  • $\mu$BGA(Ball Grid Array) is growing in response to a great demand for smaller and lighter packages for the use in laptop, mobile phones and other evolving products. However it is not easy to find its defect by human visual due to in very small dimension. From this point of view, we are interested its development of a vision based automated inspection algorithm. For this, first a 2D view of $\mu$BGA is described under a special blue illumination. Second, a notation-invariant 2D inspection algorithm is developed. Finally a 3D inspection algorithm is proposed for the case of stereo vision system. As a simulation result, it is shown that 3D defect not easy to find by 2D algorithm can be detected by the proposed inspection algorithm.

  • PDF

Study on the 3D Assembly Inspection of Two-Step Variable Valve Lift Modules Using Laser-Vision Technology (레이저 비전을 이용한 2단 가변밸브 리프트 모듈의 3D 조립검사에 대한 연구)

  • Nguyen, Huu-Cuong;Kim, Do-Joong;Lee, Byung-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.949-957
    • /
    • 2017
  • A laser-vision-based height measurement system is developed and implemented for the inspection of two-step variable valve lift module assemblies. The proposed laser-vision sensor module is designed based on the principle of laser triangulation. This paper summarizes the work on 3D point cloud data collection and height difference measurements. The configuration of the measurement system and the proposed height measurement algorithm are described and analyzed in detail. Additional measurement experiments on the height differences of valves and lash adjusters of a two-step variable valve lift module were implemented repeatedly to evaluate the accuracy and repeatability of the proposed measurement system. Experimental results show that the proposed laser-vision-based height measurement system achieves high accuracy, repeatability, and stabilization for the inspection of two-step variable valve lift module assemblies.