• Title/Summary/Keyword: 3D Virtual Model

Search Result 601, Processing Time 0.039 seconds

Application of 3D Simulation Surgery to Orthognathic Aurgery : A Preliminary Case Study

  • Lim, Jung-Hwan;Kim, Hyun-Young;Jung, Young-Soo;Jung, Hwi-Dong
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • The aim of this report is to evaluate accuracy using3D surgical simulationand digitally printedwafer in orthognathic surgery. 22-year-old female was diagnosed with mandibular prognathism and apertognathia based on 3D diagnosis using CT. Digital dentition images were taken by laser scanning from dental cast, and each STL images were integrated into one virtual skull using simulation software. Digitalized intermediate wafer was manufactured using CAD/CAM software and 3D printer, and used to move maxillary segment in real patient. Constructed virtual skull from 1 month postoperative CT scan was superimposedinto simulated virtual model to reveal accuracy. Almost maxillo-mandibular landmarks were placed in simulated position within 1 mm differences except right coronoid process. Thus 3D diagnosis, surgical simulation, and digitalized wafer could be useful method to orthognathic surgery in terms of accuracy.

The Effect of Film as the Virtual Context on Logical Thinking of Engineering Students (영화 활용 수업이 공과대학 학생의 논리적 사고력에 미치는 영향)

  • Lee, Hyunjeong
    • Journal of Engineering Education Research
    • /
    • v.16 no.6
    • /
    • pp.3-10
    • /
    • 2013
  • The purpose of this study is to design the instructional model to develop logical thinking competency of engineering students and to investigate the effect of the model. The instructional model is composed of the virtual context (films were provided), problem solving, feedback, another problem solving with different perspectives, feedback. The process is looped. The results showed statistically significant improvements between pre- and post-test. The first standardized test of critical thinking showed the improvement from pre-test to post-test (d=0.646). The second test of logical thinking showed the improvement from pre-test to mid-term test (d=0.753) and improvement from mid-term to post-test (d=1.529).

1-D Model to Estimate Injection Rate for Diesel Injector using AMESim (디젤 인젝터 분사율 예측을 위한 AMESim 기반 1-D 모델 구축)

  • Lee, Jinwoo;Kim, Jaeheun;Kim, Kihyun;Moon, Seoksu;Kang, Jinsuk;Han, Sangwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • Recently, 1-D model-based engine development using virtual engine system is getting more attention than experimental-based engine development due to the advantages in time and cost. Injection rate profile is the one of the main parameters that determine the start and end of combustion. Therefore, it is essential to set up a sophisticated model to accurately predict the injection rate as starting point of virtual engine system. In this research, procedure of 1-D model setup based on AMESim is introduced to predict the dynamic behavior and injection rate of diesel injector. As a first step, detailed 3D cross-sectional drawing of the injector was achieved, which can be done with help of precision measurement system. Then an approximate AMESim model was provided based on the 3D drawing, which is composed of three part such as solenoid part, control chamber part and needle and nozzle orifice part. However, validation results in terms of total injection quantity showed some errors over the acceptable level. Therefore, experimental work including needle movement visualization, solenoid part analysis and flow characteristics of injector part was performed together to provide more accuracy of 1-D model. Finally, 1-D model with the accuracy of less than 10% of error compared with experimental result in terms of injection quantity and injection rate shape under normal temperature and single injection condition was established. Further work considering fuel temperature and multiple injection will be performed.

Manufacture of 3-Dimensional Image and Virtual Dissection Program of the Human Brain (사람 뇌의 3차원 영상과 가상해부 풀그림 만들기)

  • Chung, M.S.;Lee, J.M.;Park, S.K.;Kim, M.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.57-59
    • /
    • 1998
  • For medical students and doctors, knowledge of the three-dimensional (3D) structure of brain is very important in diagnosis and treatment of brain diseases. Two-dimensional (2D) tools (ex: anatomy book) or traditional 3D tools (ex: plastic model) are not sufficient to understand the complex structures of the brain. However, it is not always guaranteed to dissect the brain of cadaver when it is necessary. To overcome this problem, the virtual dissection programs of the brain have been developed. However, most programs include only 2D images that do not permit free dissection and free rotation. Many programs are made of radiographs that are not as realistic as sectioned cadaver because radiographs do not reveal true color and have limited resolution. It is also necessary to make the virtual dissection programs of each race and ethnic group. We attempted to make a virtual dissection program using a 3D image of the brain from a Korean cadaver. The purpose of this study is to present an educational tool for those interested in the anatomy of the brain. The procedures to make this program were as follows. A brain extracted from a 58-years old male Korean cadaver was embedded with gelatin solution, and serially sectioned into 1.4 mm-thickness using a meat slicer. 130 sectioned specimens were inputted to the computer using a scanner ($420\times456$ resolution, true color), and the 2D images were aligned on the alignment program composed using IDL language. Outlines of the brain components (cerebrum, cerebellum, brain stem, lentiform nucleus, caudate nucleus, thalamus, optic nerve, fornix, cerebral artery, and ventricle) were manually drawn from the 2D images on the CorelDRAW program. Multimedia data, including text and voice comments, were inputted to help the user to learn about the brain components. 3D images of the brain were reconstructed through the volume-based rendering of the 2D images. Using the 3D image of the brain as the main feature, virtual dissection program was composed using IDL language. Various dissection functions, such as dissecting 3D image of the brain at free angle to show its plane, presenting multimedia data of brain components, and rotating 3D image of the whole brain or selected brain components at free angle were established. This virtual dissection program is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF

Design and Implementation of 3D Web Service based on ASE File and Model Database (ASE 파일 파싱과 모델 데이터베이스 연동을 통한 3D 웹 서비스 설계 및 구현)

  • Yeo, Yun-Seok;Park, Jong-Koo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1327-1334
    • /
    • 2004
  • The purpose of this paper is to implement Web 3D environment that is not provider - oriented but client-oriented in order to provide dynamic information and to analyze knowledges by executing programs on Web pages. For these, The 3D Viewer program that parses and renders ASE files - the most general 3D Model Data file and exported text file of 3D Max Studio - is made and then converted into ActiveX 3D Viewer Component that can be used on the Web. With the purpose of managing ASE and texture file efficiently and interacting between clients and server, ActiveX Component link ASP and Database with Web Service. The 3D View Web Service can make dynamic information and cooperative works easier in Networked Virtual Reality.

The Computerized 3-D Clothing Simulation for the Evaluation of Men's Working Pants (남성용 작업복 팬츠 3차원 가상착의 시뮬레이션 평가)

  • Park, Gin Ah
    • Journal of the Korean Society of Costume
    • /
    • v.63 no.8
    • /
    • pp.27-42
    • /
    • 2013
  • The study was aimed to develop men's working pants patterns through the computerized 3-D virtual clothing simulation system and to verify the effects of the 3-D simulated outfit by comparing it to the images of the actual outfits. The average body measurements of South Korean men aged between 30 and 39 used for the simulation in order to generate a 3-D virtual model and to realize outfits of men's working pants for the workers in the heavy industry in South Korea. And also the preliminary questionnaire survey results on certain aspects of the working pants such as type, detailed design preference and discomforting parts were taken into consideration. Both the simulated and real images of the developed working pants were compared in terms of the ease amount according to parts of the working pants, the position of seam lines, the appearance of darts and pleats, and the effects of the fabric surface according to expertise panels' subjective 5-point scale evaluation. The results throughout the study were (1) the basic working pants item worn by subject workers were the straight one pleated pants. The most discomforting parts of the working pants were in the order of body rise, thigh, hip, waist, pants hems and knee girth. (2) the drafting factors of pants patterns differed by the men's body features, which was related to the allocation of suppression amounts between waist and hip girths into darts and hip curve amounts on the waist line level of the pants. (3) the similarity of the virtually simulated and real images of men's working pants resulted in an average of 4.5 to the ease of appearance, 4.6 to the seam lines, 4.1 to the fabric surface effects in a 5-point scale, which means that the two were highly alike.

The Design and Implementation of Real-time Virtual Image Synthesis System of Map-based Depth (깊이 맵 기반의 실시간 가상 영상합성 시스템의 설계 및 구현)

  • Lee, Hye-Mi;Ryu, Nam-Hoon;Roh, Gwhan-Sung;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1317-1322
    • /
    • 2014
  • To complete an image, it is needed to go through the process to capture the actual actor's motion and compose it with virtual environment. Due to the excessive cost for production or lack of post-processing technology, however, it is mostly conducted by manual labor. The actor plays his role depending on his own imagination at the virtual chromakey studio, and at that time, he has to move considering the possible collision with or reaction to an object that does not exist. And in the process of composition applying CG, when the actor's motion does not go with the virtual environment, the original image may have to be discarded and it is necessary to remake the film. The current study suggested and realized depth-based real-time 3D virtual image composition system to reduce the ratio of remaking the film, shorten the production time, and lower the production cost. As it is possible to figure out the mutual collision or reaction by composing the virtual background, 3D model, and the actual actor in real time at the site of filming, the actor's wrong position or acting can be corrected right there instantly.

Development of the Calibration Method for the Boost Pressure and EGR Rate of a WGT Diesel Engine Using Mean Value Model (평균값 모델을 활용한 WGT 디젤엔진의 과급압력 및 EGR율 보정 방법 개발)

  • Chung, Jaewoo;Kim, Namho;Lim, Changhyun;Kim, Deokjin;Kim, Kiyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.319-329
    • /
    • 2016
  • Globally, many researchers have been trying to improve the fuel economy of a vehicle for satisfying future $CO_2$ regulation and minimizing air pollution problem. For the same background, diesel engine and vehicle system optimization using simulation models have been key technologies for the improvement of vehicle system efficiency. Therefore, in this study, calibration method for the air breathing system of a WGT diesel engine using mean value model has been composed for efficient engine and vehicle optimization simulation researches. And virtual WGT performances have been calculated for a 2 cylinder downsized diesel engine system. From these researches, the calibration method for the boost pressure and EGR rate of a virtual diesel engine related with WGT performances could be composed and some of technical issue related with downsized diesel engine could be investigated.

Development of a System to Convert a 3D Mesh Model in STL Format into OBJ Format (STL 3D 형식의 메쉬 모델을 형식으로 OBJ 변환하는 시스템 개발)

  • Yeo, Changmo;Park, Chanseok;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • The 3D mesh model is used in various fields, such as virtual reality, shape-based searching, 3D simulation, reverse engineering, 3D printing, and laser scanning. There are various formats for the 3D mesh model, but STL and OBJ are the most typical. Since application systems support different 3D mesh formats, developing technology for converting 3D mesh models from one format into another is necessary to ensure data interoperability among systems. In this paper, we propose a method to convert a 3D mesh model in STL format into the OBJ format. We performed the basic design of the conversion system and developed a prototype, then verified the proposed method by experimentally converting an STL file into an OBJ file for test cases using this prototype.

A Study on the Improving the Rendering Performance of the 3D Road Model for the Vehicle Simulator (차량 시뮬레이터를 위한 3차원 도로모델의 렌더링 성능 향상에 관한 연구)

  • Choi, Young-Il;Jang, Suk;Kim, Kyu-Hee;Cho, Ki-Yong;Kwon, Seong-Jin;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.162-170
    • /
    • 2004
  • In these days, a vehicle simulator is developed by using a VR(Virtual Reality) system. A VR system must provide a vehicle simulator with a natural interaction, a sufficient immersion and realistic images. To achieve this, it is important to provide a fast and uniform rendering performance regardless of the complexity of virtual worlds or the level of simulation. In this paper, modeling methods which offer an improved rendering performance for complex VR applications as 3D road model have been implemented and verified. The key idea of the methods is to reduce a load of VR system by means of LOD(Level of Detail), alpha blending texture mapping, texture mip-mapping and bilboard. Hence, in 3D road model where a simulation is complex or a scene is very large, the methods can provide uniform and acceptable frame rates. The VR system which is constructed with the methods has been experimented under the various application environments. It is confirmed that the proposed methods are effective and adequate to the VR system which associates with a vehicle simulator.