• Title/Summary/Keyword: 3D Topography

Search Result 242, Processing Time 0.027 seconds

Numerical Simulation of Tribological Phenomena Using Stochastic Models

  • Shimizu, T.;Uchidate, M;Iwabuchi, A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.235-236
    • /
    • 2002
  • Tribological phenomena such as wear or transfer are influenced by various factors and have complicated behavior. Therefore, it is difficult to predict the behavior of the gribological phenomena because of their complexity. But, those tribological phenomena can be considered simply as to transfer micro material particles from the sliding interface. Then, we proposed the numerical simulation method for tribological phenomena such as wear of transfer using stochastic process models. This numerical simulation shows the change of the 3-D surface topography. In this numerical simulation, initial 3-D surface toughness data are generated by the method of non-causal 2-D AR (autoregressive) model. Processes of wear and transfer for some generated initial 3-D surface data are simulated. Simulation results show successfully the change of the 3-D surface topography.

  • PDF

MT Response of a Small Island Model with Deep Sea and Topography (깊은 바다와 지형을 고려한 소규모 섬 모델의 MT 반응 연구)

  • Kiyeon Kim;Seong Kon Lee;Seokhoon Oh;Chang Woo Kwon
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.37-50
    • /
    • 2024
  • The magnetotelluric (MT) survey can be affected by external environmental factors. In particular, when acquiring MT data in islands, it is essential to consider the combined effect of topography and sea to understand the results and make accurate interpretations. To analyze the MT response (apparent resistivity, phase) with consideration of the effect of topography and sea, a small cone-shaped island model surrounded by deep sea was created. Two-dimensional (2-D) and three-dimensional (3-D) forward modeling were performed on the terrain model considering topography and the island model considering both topography and sea. The 2-D MT response did not reflect the topographic and sea effect of the direction orthogonal to the 2-D profile. The 3-D MT response included topographic and sea effects in all directions. The XY and YX components of the apparent resistivity were separated on undulating topography, such as a hill. A conductor at 1 km below sea level could be distinguished from topographic and sea effects in the MT response, and low resistivity anomaly was attenuated at greater depths. This study will facilitate understanding of field data measured on small islands.

Modeling of plasma etching and development of three-dimensional topography simulator (플라즈마 식각 모델링 및 3차원 토포그래피 시뮬레이터 개발)

  • 권오섭;이제희;윤상호;반용찬;김연태;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.25-32
    • /
    • 1998
  • In this paper, we report the result of the three-dimensional topography simultor, 3D-SURFILER(SURface proFILER) for the simulation of topographical evalution of the surface, curing a plasma etching process. We employed cell-removal algorithm to represent the topographical evoluation of the surface. The visibility with shadow effect was developed and applied to the spillover algorithm. To demonstrate the capability of 3D-SURFILER, we compared with simulated profiles with the SEM picture for dry and reactive ion etching(RIE) of the Si$_{3}$N$_{4}$ film and Pt film.

  • PDF

Study of the Effect of Surface Roughness through the Application of 3D Profiler and 3D Laser Confocal Microscope (삼차원 표면 조도 측정기와 삼차원 레이저 공초점 현미경 적용에 따른 표면 거칠기에 대한 영향 연구)

  • Hee-Young Jung;Dae-Eun Kim
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.47-53
    • /
    • 2024
  • Surface topography plays a decisive role in determining the performance of several precision components. In particular, the surface roughness of semiconductor devices affects the precision of the circuit. In this regard, the surface topography of a given surface needs to be appropriately assessed. Typically, the average roughness is used as one of the main indicators of surface finish quality because it is influenced by both dynamic and static parameters. Owing to the increasing demand for such accurate and reliable surface measurement systems, studies are continuously being conducted to understand the parameters of surface roughness and measure the average roughness with high reliability. However, the differences in the measurement methods of surface roughness are not clearly understood. Hence, in this study, the surface roughness of the back of a silicon wafer was measured using both contact and noncontact methods. Subsequently, a comparative analysis was conducted according to various surface roughness parameters to identify the differences in surface roughness depending on the measurement method. When using a 3D laser confocal microscope, even smaller surface asperities can be measured compared with the use of a 3D profiler. The results are expected to improve the understanding of the surface roughness characteristics of precision components and be used as a useful guideline for selecting the measurement method for surface topography assessment.

A Study on a Post-Processing Technique for MBES Data to Improve Seafloor Topography Modeling (해저지형 모델링 향상을 위한 MBES자료 후처리 기법 연구)

  • Kim, Dong-Moon;Kim, Eung-Nam
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.19-28
    • /
    • 2011
  • Three dimensional modeling for seafloor topography is essential to monitoring displacements in underwater structures as well as all sorts of disasters along the shore. MBES is a system that is capable of high-density water depth measurement for seafloor topography and is in broad uses for gathering 3D data and detecting displacements. MBES data, however, contain random errors that take place in the equipment offset and surveying process and require systematic researches on the correction of wrong depth measurements. Thus this study set out to propose a post-processing technique to eliminate an array of random errors taking place after equipment offset correction and basic noise correction in the MBES system and analyze its applicability to seafloor topography modeling by applying it to the subject area.

Slope topography effect on the seismic response of mid-rise buildings considering topography-soil-structure interaction

  • Shabani, Mohammad J.;Shamsi, Mohammad;Ghanbari, Ali
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.187-200
    • /
    • 2021
  • The main factor for the amplification of ground motions near the crest or the toe of a slope is the reflection of the incident waves. The effects of the slope topography on the surrounding lands over the crest or at the toe can amplify the seismic responses of buildings. This study investigates the seismic performance of the slope topography and three mid-rise buildings (five, ten, and fifteen-storey) located near the crest and toe of the slope by 3D numerical analysis. The nonlinear model was used to represent the real behavior of building and ground elements. The average results of seven records were used in the investigations. Based on the analysis, the amplification factor of acceleration near the crest and toe of the slope was the most effective at distances of 2.5 and 1.3 times the slope height, respectively. Accordingly, the seismic performance of buildings was studied at a distance equal to the height of the slope from the crest and toe. The seismic response results of buildings showed that the slope topography to have little impact on up to five-storey buildings located near the crest. Taking into account a topography-soil-structure interaction system increases the storey displacement and base shear in the building. Accordingly, in topography-soil-structure interaction analyses, the maximum lateral displacement was increased by 71% and 29% in ten and fifteen-storey buildings, respectively, compare to the soil-structure interaction system. Further, the base shear force was increased by 109% and 78% in these buildings relative to soil-structure interaction analyses.

Scientometrics-based R&D Topography Analysis to Identify Research Trends Related to Image Segmentation (이미지 분할(image segmentation) 관련 연구 동향 파악을 위한 과학계량학 기반 연구개발지형도 분석)

  • Young-Chan Kim;Byoung-Sam Jin;Young-Chul Bae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.563-572
    • /
    • 2024
  • Image processing and computer vision technologies are becoming increasingly important in a variety of application fields that require techniques and tools for sophisticated image analysis. In particular, image segmentation is a technology that plays an important role in image analysis. In this study, in order to identify recent research trends on image segmentation techniques, we used the Web of Science(WoS) database to analyze the R&D topography based on the network structure of the author's keyword co-occurrence matrix. As a result, from 2015 to 2023, as a result of the analysis of the R&D map of research articles on image segmentation, R&D in this field is largely focused on four areas of research and development: (1) researches on collecting and preprocessing image data to build higher-performance image segmentation models, (2) the researches on image segmentation using statistics-based models or machine learning algorithms, (3) the researches on image segmentation for medical image analysis, and (4) deep learning-based image segmentation-related R&D. The scientometrics-based analysis performed in this study can not only map the trajectory of R&D related to image segmentation, but can also serve as a marker for future exploration in this dynamic field.

A Novel Scheme to Depth-averaged Model for Analyzing Shallow-water Flows over Discontinuous Topography (불연속 지형을 지나는 천수 흐름의 해석을 위한 수심적분 모형에 대한 새로운 기법)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1237-1246
    • /
    • 2015
  • A novel technique was proposed to calculate fluxes accurately by separation of flow area into a part of step face which is dominated by flow resistance of it and an upper part which is relatively less affected by the step face in analyzing shallow-water flows over discontinuous topography. This technique gives fairly good agreement with exact solutions, 3D simulations, and experimental results. It has been possible to directly analyze shallow-water flows over discontinuous topography by the technique developed in this study. It is expected to apply the developed technique to accurate evaluation of overflows over weirs or retaining walls (riverside roads) and areas flooded by the inundation in the city covered in discontinuous topography.

Land Subsidence Survey and Analysis Using the Terrestrial LIDAR in Jakarta Bay, Indonesia

  • Park, Han-San
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.233-240
    • /
    • 2013
  • Jakarta is the capital city of Indonesia which has problems of land subsidence with the rates of about 1 to 15 cm/year, up to 20-25 cm/year. The study has examined the land subsidence in Pantai Mutiara, Jakarta Bay which is a reclaimed area by using the Terrestrial LIDAR survey technique. The Terrestrial LIDAR survey results show that the survey site has mean elevation of 0.24 m with the highest elevation of 0.93 m and lowest - 0.35 m. Considering that AHHW (approximate highest high water) is 0.51 m, many areas of the survey site are lying below the AHHW. Pantai Mutiara area is showing various subsidence rates depending on sites although the site is relatively narrow and small (about 1 $km^2$). There is elevation differences of almost 1m within the site. In this study, key information including topography, dike height distribution, and future coastal flooding risk of the survey area was able to be provided by Terrestrial LIDAR survey conducted only once. Especially, as the 3D precision topography effectively conveys important messages relating to vulnerability of the site, policy makers and stakeholders can easily understand the situation of the site.