• Title/Summary/Keyword: 3D Terrain

Search Result 359, Processing Time 0.041 seconds

A Study on the Development and Application of High-Precision 3-D Spatial Analysis Technique applied to Terrain Features (지형특징을 고려한 고정밀 3차원 공간분석기법 개발 및 그 적용에 관한 연구)

  • 신봉호;양승룡;송왕재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.169-177
    • /
    • 2000
  • The modelling technique on the terrain of real-world in geo-spatial information system is a primary element for geo-information processing. This paper is designed to make use of TIN in geo-spatial information system and study the development and application of high-precision 3-D spatial analysis technique applied to terrain features. According to this research, MODEL 3 applied to breakline in mild slope/steep slope and MODEL 2 applied to peak in complex region show relatively low RMSE. This consequence proves that these two models have high precision in comparison with other models. This study also finds out optimal routines in the estimation method of slope grade and in the construction method of surface. N_T, LSP_T and LSQ_T in mild slope, N_T in steep slope, and LSQ_T in complex region turn out to be the optimal routines for high-precision 3-D spatial analysis.

  • PDF

Comparative Performance Analysis of Feature Detection and Matching Methods for Lunar Terrain Images (달 지형 영상에서 특징점 검출 및 정합 기법의 성능 비교 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.437-444
    • /
    • 2020
  • A lunar rover's optical camera is used to provide navigation and terrain information in an exploration zone. However, due to the scant presence of atmosphere, the Moon has homogeneous terrain with dark soil. Also, in extreme environments, the rover has limited data storage with low computation capability. Thus, for successful exploration, it is required to examine feature detection and matching methods which are robust to lunar terrain and environmental characteristics. In this research, SIFT, SURF, BRISK, ORB, and AKAZE are comparatively analyzed with lunar terrain images from a lunar rover. Experimental results show that SIFT and AKAZE are most robust for lunar terrain characteristics. AKAZE detects less quantity of feature points than SIFT, but feature points are detected and matched with high precision and the least computational cost. AKAZE is adequate for fast and accurate navigation information. Although SIFT has the highest computational cost, the largest quantity of feature points are stably detected and matched. The rover periodically sends terrain images to Earth. Thus, SIFT is suitable for global 3D terrain map construction in that a large amount of terrain images can be processed on Earth. Study results are expected to provide a guideline to utilize feature detection and matching methods for future lunar exploration rovers.

Implementation of 3D GIS technology for Cell Planning System (무선망 설계 시스템에서의 3D GIS 분석 기술 구현)

  • Jeong, Mi-Young;Jung, Hyun-Meen
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.751-752
    • /
    • 2008
  • This paper introduces current technology trend of cell planning system in radio propagation and 3D GIS technologies which are implemented in Cell planning system "CellTREK" for accurate radio propagation analysis. It includes managing of DTM(Digital Terrain Model) data considering building height used by 3D propagation analysis module, and navigation module based on DirectX technology to estimate and eliminate the shadowing area by high rise buildings.

  • PDF

Analysis of Terrain Data Change using Digital Elevation Data (수치표고자료를 활용한 지형자료변화 분석)

  • 이형석;송승호;배상호
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.385-388
    • /
    • 2004
  • Many environmental destruction factors are accompanied in the mining development work and the secondary environmental disaster and the induction factors are inhered. We aquired digital data using aerial photogrammetry to analyze the terrain current situation according to the development situation of the mining restoration plan. We made the object area to 3D model and conducted terrian change monitoring. Then, we presented the decision-making information to improve rational management according to the original state plan.

  • PDF

A Study on the Selection and Applicability Analysis of 3D Terrain Modeling Sensor for Intelligent Excavation Robot (지능형 굴삭 로봇의 개발을 위한 로컬영역 3차원 모델링 센서 선정 및 현장 적용성 분석에 관한 연구)

  • Yoo, Hyun-Seok;Kwon, Soon-Wook;Kim, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2551-2562
    • /
    • 2013
  • Since 2006, an Intelligent Excavation Robot which automatically performs the earth-work without operator has been developed in Korea. The technologies for automatically recognizing the terrain of work environment and detecting the objects such as obstacles or dump trucks are essential for its work quality and safety. In several countries, terrestrial 3D laser scanner and stereo vision camera have been used to model the local area around workspace of the automated construction equipment. However, these attempts have some problems that require high cost to make the sensor system or long processing time to eliminate the noise from 3D model outcome. The objectives of this study are to analyze the advantages of the existing 3D modeling sensors and to examine the applicability for practical use by using Analytic Hierarchical Process(AHP). In this study, 3D modeling quality and accuracy of modeling sensors were tested at the real earth-work environment.

Effective Application of Digital Photogrammetry using Local Terrain Model (국부지형모형을 이용한 수치사진측량의 효율적 적용)

  • 박운용;김정희;문두열;정공운
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.199-204
    • /
    • 2003
  • Digital high resolution cameras are widely available, and are increasingly use in digital close-range photogrammetry. And photogrammetry instruments are developing rapidly and the precision is improving continuously, The building of 3D terrains of high precision are possible and the calculation of the areas or the earthwork volumes have high precision due to the development of the technique of the spatial information system using computer, In this study, using the digital camera which has capacity of keeping numerical value by itself and easy carrying, we analyze the positioning error according to various change of photographing condition. Also we t]v to find a effective method of acquiring basis data for 3D monitoring of high-accuracy in pixel degree through digital close-range photogrammetry with bundle adjustment for local terrain model generation and earthwork volume.

  • PDF

Development of a Visual Simulation System for the Motion Rider (모션 라이더를 위한 시각 시뮬레이션 시스템의 개발)

  • Kwon, Jung-Hoon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.55-61
    • /
    • 2005
  • In this paper, we propose the visual simulation system for virtual reality motion rider system. The visual simulation system can apply verity virtual reality system. This paper deals with programs on 3D automatic creation of terrain, road design, and a realtime rendering program for the virtual reality system. For the 3D automatic creation of terrain, DEM data and rectangular grid method are applied. We can make two different road object with the road design program. One of them includes road definition, and the other is obtained by using 'NURBS curve.' Visual simulation is consisted by additional modeling and real-time rendering. We can apply the programs made in this way to visual system of driving simulator.

Indexing of 3D Terrain Space for Predicting Collisions with Moving Objects

  • Wu, Wan-Chun;Seo, Young-Duk;Hong, Bong-Hee
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.159-162
    • /
    • 2003
  • In this paper, to find probable collision positions between moving object and terrain in 3D space efficiently, we use a model, similar to Ray Tracing, which finds the triangles intersected by a directed line segment from a large amount of triangles. We try to reduce dead space as much as possible to find candidate triangles intersected by a directed line segment than previous work's. A new modified octree, LBV-Octree(Least Bounding Voxel Octree), is proposed, and we have a ray tracing with it. In the experiment, ray tracing with LBV-Octree provides $5%{\sim}11%$ better performance than with classical octree.

  • PDF

A Study on Regular Grid Based Real-Time Terrain LOD Algorithm for Enhancing Memory Efficiency (메모리 효율 향상을 위한 고정격자기반 실시간 지형 LOD 알고리즘에 관한 연구)

  • Whangbo Taeg-keun;Yang Young-Kyu;Moon Min-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.409-418
    • /
    • 2004
  • LOD is a widely used technique in 3D game and animation to represent large 3D data sets smoothly in real-time. Most LOD algorithms use a binary tree to keep the ancestor information. A new algorithm proposed in this paper, however, do not keep the ancestor information, thus use the less memory space and rather increase the rendering performance. To verify the efficiency of the proposed algorithm, performance comparison with ROAM is conducted in real-time 3D terrain navigation. Result shows that the proposed algorithm uses about 1/4 of the memory space of ROAM and about 4 times faster than ROAM.