• Title/Summary/Keyword: 3D Structure Integration

Search Result 111, Processing Time 0.025 seconds

A Study on the Guidance Signage System of Outpatient in General Hospital using Spatial Configuration Theory - View from G.D.Weisman's Way-finding Influence Factors (공간구조론을 적용한 종합병원 외래부 유도사인 배치 및 평가에 관한 연구 - G.D.Weisman의 길찾기 요소를 중심으로)

  • Kim, Suktae;Paik, Jinkyung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.21 no.3
    • /
    • pp.25-35
    • /
    • 2015
  • Purpose: Signs that are installed at unnoticeable places or that disconnect before the destination can bring errors of location information delivery. Therefore, this study aims to find out the spatial relation between structure of space and signs in the perspective of visual exposure possibility, operating arrangement and assesment by applying spatial structure theory. Methods: Effectiveness of organization of guidance signs was evaluated after the four way-finding factors(Plan Configuration, Sign System, Perceptual Access, Architectural Difference) that G.D.Weisman suggested were interpreted by spatial structure theory(J-Graph analysis, Space Syntax, Visual Graph Analysis) under the premise that it is closely related to the structure of space. Results: 1) Because the south corridor that connects each department of outpatient division is located in the hierarchy center of the space, and walking density is expected to be high, guidance signs need to be organized at the place with high integration value. 2) The depth to the destination space can be estimated through J-Graph analysis. The depth means a switch of direction, and the guidance signs are needed according to the number. 3) According to visibility graph analysis, visual exposure can be different in the same hierarchy unit space according to the shape of the flat surface. Based on these data, location adjustment of signs is possible, and the improvement effect can be estimated quantitatively. Implications: Spatial structure theory can be utilized to design and evaluate sign systems, and it helps to clearly understand the improvement effect. It is desirable to specify design and estimation of sign systems in the order of J-Graph analysis${\rightarrow}$Space Syntax Theory${\rightarrow}$visibility graph analysis.

Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling

  • Jung, Hyungjoo;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1659-1668
    • /
    • 2016
  • Understanding 3D structure of scenes is of a great interest in various vision-related tasks. In this paper, we present a unified approach for estimating depth from a single monocular image. The key idea of our approach is to take advantages both of parametric learning and non-parametric sampling method. Using a parametric convolutional network, our approach learns the relation of various monocular cues, which make a coarse global prediction. We also leverage the local prediction to refine the global prediction. It is practically estimated in a non-parametric framework. The integration of local and global predictions is accomplished by concatenating the feature maps of the global prediction with those from local ones. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively.

Modeling of High-speed 3-Disional Embedded Inductors (고속 3차원 매립 인덕터에 대한 모델링)

  • 이서구;최종성;윤일구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.139-142
    • /
    • 2001
  • As microeletronics technology continues to progress, there is also a continuous demand on highly integration and miniaturization of systems. For example, it is desirable to package several integrated circuits together in multilayer structure, such as multichip modules, to achieve higher levels of compactness and higher performance. Passive components (i.e., capacitors, resistors, and inductors) are very important for many MCM applications. In addition, the low-temperature co-fired ceramic (LTCC) process has considerable potential for embedding passive components in a small area at a low cost. In this paper, we investigate a method of statistically modeling integrated passive devices from just a small number of test structures. A set of LTCC inductors is fabricated and their scattering parameters (5-parameters) are measured for a range of frequencies from 50MHz to 5GHz. An accurate model for each test structure is obtained by using a building block based modeling methodology and circuit parameter optimization using the HSPICE circuit simulator.

  • PDF

A Study on Dynamic Response Analysis Algorithm for Three Dimensional Structure (3차원 구조물의 동적응답 해석알고리즘에 관한 연구)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.637-642
    • /
    • 2000
  • This paper suggests new analysis algorithm for tile dynamic response of three dimensional structure which is frequently found in pipe line system of plant by the combination of the transfer stiffness coefficient method(TSCM) and Newmark method. Presented analysis algorithm for dynamic response can improve the computational accuracy remarkably owing to advantages of tile TSCM in comparison of transfer matrix method(TMM). Analysis system was modeled as a lumped mass system in this mettled. The analysis algorithm for dynamic response was formulated for the three dimensional structure. The validity of the this method is demonstrated through the results of numerical experiment for simple computational model by the TSCM and TMM.

  • PDF

Concept and Structure of Parametric Object Breakdown Structure (OBS) for Practical BIM (BIM 객체분류체계 (OBS) 개념 및 구조)

  • Jung, Youngsoo;Kim, Yesol;Kim, Min;Ju, Taehwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.88-96
    • /
    • 2013
  • Recent proliferation of building information modeling (BIM) has actively stimulated integrated utilization of geometric (graphic) and non-geometric (non-graphic) data. Nevertheless, physically and logically, linking and maintaining these two different types of data in an integrated manner requires enormous overhead efforts for practical implementation. In order to address this problem, this paper proposes a concept and structure of the object breakdown structure (OBS) that facilitates advanced BIM implementations in an automated and effective manner. Proposed OBS numbering system has secure rules for organizing graphic objects in full considerations of effectively integrating with non-geometric data (e.g. cost and schedule). It also removes repetitive linking process caused by design changes or modifications. The result of applying this concept to a housing project revealed that only 120 definitions controled over 6,000 graphic objects for full integration with cost and schedule functions.

State-of-the-art 3D GIS: System Development Perspectives

  • Kim, Kyong-Ho;Lee, Ki-Won;Lee, Jong-Hun;Yang, Young-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.153-158
    • /
    • 1998
  • Since the mid-1990′s, researches on 3D GIS have been regarded as one of main issues both in the academic sites and commercial vendors; recently, some prototyped systems or the first versioned software systems of commercial basis are being reported and released. Unlike conventional 2D GIS, which consists in intelligent structured GIS or desktop GIS, every 3D GIS has its own distinguished features according to data structure-supporting capability, GIS-styled functionality, external database accessibility, interfacing extents with 2D GIS, 3D visualization/texture mapping ability, and so forth. In this study, technical aspects related to system development, SERI-Web3D GIS ver. 1.2, are explained. Main features in this revised 3D GIS can be summarized: 2-tier system model(client-server), VGFF(Virtual GIS File Format), internal GIS import, Feature manager(zoning, layering, visualization evironment), Scene manager(manage 3D geographic world), Scene editor, Spatial analyzer(Intersect, Buffering, Network analysis), VRML exporter. While, most other 3D GISes or cartographic mapping systems may be categorized into 3D visualization systems handling terrain height-field processing, 2D GIS extension modules, or 3D geometric feature generation system using orthophoto image: actually, these are eventually considered as several parts of "real 3D GIS". As well as these things, other components, especially web-based 3D GIS, are being implemented in this study: Surface/feature integration, Java/VRML linkage, Mesh/Grid problem, LOD(Level of Detail)/Tiling, Public access security problem, 3-tier architecture extension, Surface handling strategy for VRML.

  • PDF

Development of the ISO 15926-based Classification Structure for Nuclear Plant Equipment (ISO 15926 국제 표준을 이용한 원자력 플랜트 기자재 분류체계)

  • Yun, J.;Mun, D.;Han, S.;Cho, K.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.191-199
    • /
    • 2007
  • In order to construct a data warehouse of process plant equipment, a classification structure should be defined first, identifying not only the equipment categories but also attributes of an each equipment to represent the specifications of equipment. ISO 15926 Process Plants is an international standard dealing with the life-cycle data of process plant facilities. From the viewpoints of defining classification structure, Part 2 data model and Reference Data Library (RDL) of ISO 15926 are seen to respectively provide standard syntactic structure and semantic vocabulary, facilitating the exchange and sharing of plant equipment's life-cycle data. Therefore, the equipment data warehouse with an ISO 15926-based classification structure has the advantage of easy integration among different engineering systems. This paper introduces ISO 15926 and then discusses how to define a classification structure with ISO 15926 Part 2 data model and RDL. Finally, we describe the development result of an ISO 15926-based classification structure for a variety of equipment consisting in the reactor coolant system (RCS) of APR 1400 nuclear plant.

Structural Modeling and Characteristic Analysis of Container Handling System (컨테이너 적재 시스템의 구조 모델링 및 특성 해석)

  • Kim, Young-Sang;Maeng, Hee-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.458-463
    • /
    • 2011
  • A CHS(Container Handling System) is a system to load and to unload ISO 2000 or ISO 4000 standard containers which is widely used for various industrial transport purpose. A new light type of CHS is introduced in this paper, in order to reduce weight of cargos and to give the convenience in cargo loading and unloading without additional lifting equipments. The structural models of this system are created to assemble the smooth integration of system and to interface the each composing units with the specification of truck chassis to be mounted. These models are applied to find the suitable design parameters under the condition of force restrictions of each units. Finally, the stability of this system are investigated by analyzing the dynamic simulation using Visual NASTRAN 4D, and it could be recommend the good design parameters for the manufacturing purpose.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Development of Meshless Method Using Least-Squares Method with Geometric Conservation Law for Structural Dynamic Analysis (기하학적 보존을 만족하는 최소제곱법을 활용한 무격자 구조해석 기법 개발)

  • Sang Woo Lee;Jin Young Huh;Kyu Hong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.67-74
    • /
    • 2023
  • A meshless technique using the geometric conservation least-squares method (GC-LSM) was devised to discretize the governing equation of linear elasticity. Although the finite-element method is widely used for structural analysis, a meshless method was developed because of its advantages in a moving grid system. This work is the preliminary phase for developing a fully meshless-based fluid-structure interaction solver. In this study, Cauchy's momentum equation was discretized in strong form using GC-LSM for the structural domain, and the Newmark beta method was used for time integration. The solver was validated in 1D, 2D, and 3D benchmarking problems. Static and dynamic results were obtained. The results are more accurate than those of analytic solutions.