• Title/Summary/Keyword: 3D Spatial Image

Search Result 484, Processing Time 0.025 seconds

An Analysis of 3D Mesh Accuracy and Completeness of Combination of Drone and Smartphone Images for Building 3D Modeling (건물3D모델링을 위한 드론과 스마트폰영상 조합의 3D메쉬 정확도 및 완성도 분석)

  • Han, Seung-Hee;Yoo, Sang-Hyeon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.69-80
    • /
    • 2022
  • Drone photogrammetry generally acquires images vertically or obliquely from above, so when photographing for the purpose of three-dimensional modeling, image matching for the ground of a building and spatial accuracy of point cloud data are poor, resulting in poor 3D mesh completeness. Therefore, to overcome this, this study analyzed the spatial accuracy of each drone image by acquiring smartphone images from the ground, and evaluated the accuracy improvement and completeness of 3D mesh when the smartphone image is not combined with the drone image. As a result of the study, the horizontal (x,y) accuracy of drone photogrammetry was about 1/200,000, similar to that of traditional photogrammetry. In addition, it was analyzed that the accuracy according to the photographing method was more affected by the photographing angle of the object than the increase in the number of photos. In the case of the smartphone image combination, the accuracy was not significantly affected, but the completeness of the 3D mesh was able to obtain a 3D mesh of about LoD3 that satisfies the digital twin city standard. Therefore, it is judged that it can be sufficiently used to build a 3D model for digital twin city by combining drone images and smartphones or DSLR images taken on the ground.

Study on Applying 3D Display Device for Effective Update of Spatial Information Based on Stereovision (입체시 기반 공간정보의 효율적 갱신을 위한 3차원 디스플레이 장비 적용에 관한 연구)

  • Choi, Sun-Ok;Kim, Dong-Wook;Kim, Deok-In;Wie, Gwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.601-611
    • /
    • 2011
  • The paper deals with the selection of 3D display devices in accordance with the user's conveniences and accuracy of spatial information by applying 3D display devices to Spatial Information Update System (SIUS) which generate edit and update digital thematic maps. After applying different manufacturer's 3D display devices to SIUS, aerial images acquired from the stereo images were displayed through the devices and spatial information was extracted from the displayed 3D images. Assessment of 3D display devices were based on quantitative and qualitative analysis on accuracy of spatial information and user's conveniences. Planar's PL2020 and Redrover's Tru3Di 3D monitor has expressed outstanding display environment in 3D related tasks for the generation of spatial information compared to other 3D display devices. System improvement is expected regarding accuracy of spatial information, work efficiency and user's conveniences.

A Study on the Generation of 3 Dimensional Graphic Files Using SPOT Imagery (SPOT 위성영상을 이용한 3차원 그래픽 화일 생성연구)

  • Cho, Bong-Whan;Lee, Yong-Woong;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.79-89
    • /
    • 1995
  • Using SPOT satellite imagery, 3 dimensional geographic information can be obtained from SPOT's oblique viewing image. Especially, SPOT provides high spatial resolution, adequate base/height ratio and stable orbit characteristics. In this paper, 3D terrain features were extracted using SPOT stereo image and also the techniques for generation of 3D graphic data were developed for the extracted terrain features. We developed computer programs to generate automatically 3D graphic files and to display geographic information on the computer screen, The results of this study may be effectively utilized for the development of 3D geographic information using satellite images.

  • PDF

A Study on the Generation of 3 Dimensional Graphic Files Using SPOT Imagery (SPOT위성영상정보를 이용한 3차원 그래픽 화일 생성연구)

  • Cho, Bong-Hwan;Lee, Yong-Woong;Park, Wan-Yong
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.121-142
    • /
    • 1995
  • Using SPOT satellite imagery, 3 dimensional geographic information can be obtained from SPOT's oblique viewing image. Especially, SPOT provides high spatial resolution, adequate base/height ratio and stable orbit characteristics. In this paper, 3D terrain features were extracted using SPOT stereo image and also the techniques for generation of 3D graphic data were developed for the extracted terrain features. We developed computer programs to generate automatically 3D graphic files and to display geographic information on the computer screen. The results of this study may be effectively utilized for the development of 3D geographic information using satellite images.

  • PDF

Scene-based Nonuniformity Correction by Deep Neural Network with Image Roughness-like and Spatial Noise Cost Functions

  • Hong, Yong-hee;Song, Nam-Hun;Kim, Dae-Hyeon;Jun, Chan-Won;Jhee, Ho-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.11-19
    • /
    • 2019
  • In this paper, a new Scene-based Nonuniformity Correction (SBNUC) method is proposed by applying Image Roughness-like and Spatial Noise cost functions on deep neural network structure. The classic approaches for nonuniformity correction require generally plenty of sequential image data sets to acquire accurate image correction offset coefficients. The proposed method, however, is able to estimate offset from only a couple of images powered by the characteristic of deep neural network scheme. The real world SWIR image set is applied to verify the performance of proposed method and the result shows that image quality improvement of PSNR 70.3dB (maximum) is achieved. This is about 8.0dB more than the improved IRLMS algorithm which preliminarily requires precise image registration process on consecutive image frames.

Resolution in Optical Scanning Holography (광스캔닝 훌로그래피의 해상도)

  • Doh, Kyu Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.126-131
    • /
    • 1998
  • In optical scanning holography, 3-D holographic information of an object is generated by 2-D active optical scanning. The optical scanning beam can be a time-dependent Gaussian apodized Fresnel zone plate. In this technique, the holographic information manifests itself as an electrical signal which can be sent to an electron-beam-addressed spatial light modulator for coherent image reconstruction. This technique can be applied to 3-D optical remote sensing especially for identifying flying objects. In this paper, we first briefly review optical scanning holography and analyze the resolution achievable with the system. We then present mathematical expression of real and virtual image which are responsible for holographic image reconstruction by using Gaussian beam profile.

  • PDF

Color Component Analysis For Image Retrieval (이미지 검색을 위한 색상 성분 분석)

  • Choi, Young-Kwan;Choi, Chul;Park, Jang-Chun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.403-410
    • /
    • 2004
  • Recently, studies of image analysis, as the preprocessing stage for medical image analysis or image retrieval, are actively carried out. This paper intends to propose a way of utilizing color components for image retrieval. For image retrieval, it is based on color components, and for analysis of color, CLCM (Color Level Co-occurrence Matrix) and statistical techniques are used. CLCM proposed in this paper is to project color components on 3D space through geometric rotate transform and then, to interpret distribution that is made from the spatial relationship. CLCM is 2D histogram that is made in color model, which is created through geometric rotate transform of a color model. In order to analyze it, a statistical technique is used. Like CLCM, GLCM (Gray Level Co-occurrence Matrix)[1] and Invariant Moment [2,3] use 2D distribution chart, which use basic statistical techniques in order to interpret 2D data. However, even though GLCM and Invariant Moment are optimized in each domain, it is impossible to perfectly interpret irregular data available on the spatial coordinates. That is, GLCM and Invariant Moment use only the basic statistical techniques so reliability of the extracted features is low. In order to interpret the spatial relationship and weight of data, this study has used Principal Component Analysis [4,5] that is used in multivariate statistics. In order to increase accuracy of data, it has proposed a way to project color components on 3D space, to rotate it and then, to extract features of data from all angles.

SEMI-AUTOMATIC 3D BUILDING EXTRACTION FROM HIGH RESOLUTION SATELLITE IMAGES

  • Javzandulam, Tsend-Ayush;Rhee, Soo-Ahm;Kim, Tae-Jung;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.606-609
    • /
    • 2006
  • Extraction of building is one of essential issues for the 3D city models generation. In recent years, high-resolution satellite imagery has become widely available, and this shows an opportunity for the urban mapping. In this paper, we have developed a semi-automatic algorithm to extract 3D buildings in urban settlements areas from high-spatial resolution panchromatic imagery. The proposed algorithm determines building height interactively by projecting shadow regions for a given building height onto image space and by adjusting the building height until the shadow region and actual shadow in the image match. Proposed algorithm is tested with IKONOS images over Deajeon city and the algorithm showed promising results.┌阀؀䭏佈䉌ᔀ鳪떭臬隑駭验耀

  • PDF

Improvement of 3D Stereoscopic Perception Using Depth Map Transformation (깊이맵 변환을 이용한 3D 입체감 개선 방법)

  • Jang, Seong-Eun;Jung, Da-Un;Seo, Joo-Ha;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.916-926
    • /
    • 2011
  • It is well known that high-resolution 3D movie contents frequently do not deliver the identical 3D perception to low-resolution 3D images. For solving this problem, we propose a novel method that produces a new stereoscopic image based on depth map transformation using the spatial complexity of an image. After analyzing the depth map histogram, the depth map is decomposed into multiple depth planes that are transformed based upon the spatial complexity. The transformed depth planes are composited into a new depth map. Experimental results demonstrate that the lower the spatial complexity is, the higher the perceived video quality and depth perception are. As well, visual fatigue test showed that the stereoscopic images deliver less visual fatigue.

Development of Data Automation Algorithm for GIS Service in Universal 3D Graphics Engine (범용 3D 그래픽 엔진의 GIS 정보 서비스를 위한 데이터 자동변환 알고리즘 개발)

  • Kim, Hyeong Hun;Park, Hyeon Cheol;Choi, Hyeoung Wook;Gang, Su Myung;Choung, Yun Jae
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.3
    • /
    • pp.581-592
    • /
    • 2017
  • Geographic Information System (GIS) is a method of expressing objects in a space. Currently, many research and developments are being conducted to implement 3D GIS. In previous studies, 3D GIS applications have been developed using Unity 3D, which is a 3D engine with good development accessibility. However, it requires manual work to enter various formats of GIS data, making it difficult to immediately reflect GIS data that change frequently. To improve this problem, this study developed a method for automatically reading and outputting various GIS data from the existing Unity 3D application. The improved application could read Satellite Images, Aerial Photographs, Digital Elevation Models (DEM) and Shapefiles with no transformation through other commercial programs, and they could be implemented as 3D objects. This study automated the GIS data conversion which had been manually performed and as a result, the manpower, time, and resources required for 3D GIS implementation can be saved.