• Title/Summary/Keyword: 3D Scanning Surface Image

Search Result 57, Processing Time 0.024 seconds

Photoluminescence Imaging of SiO2@ Y2O3:Eu(III) and SiO2@ Y2O3:Tb(III) Core-Shell Nanostructures

  • Cho, Insu;Kang, Jun-Gill;Sohn, Youngku
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.575-580
    • /
    • 2014
  • We uniformly coated Eu(III)- and Tb(III)-doped yttrium oxide onto the surface of $SiO_2$ spheres and then characterized them by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction crystallography and UV-Visible absorption. 2D and 3D photoluminescence image map profiles were reported for the core-shell type structure. Red emission peaks of Eu(III) were observed between 580 to 730 nm and assigned to $^5D_0{\rightarrow}^7F_J$ (J = 0 - 4) transitions. The green emission peaks of Tb(III) between 450 and 650 nm were attributed to the $^5D_4{\rightarrow}^7F_J$ (J = 6, 5, 4, 3) transitions. For annealed samples, Eu(III) ions were embedded at a $C_2$ symmetry site in $Y_2O_3$, which was accompanied by an increase in luminescence intensity and redness, while Tb(III) was changed to Tb(IV), which resulted in no green emission.

VALIDITY OF SUPERIMPOSITION RANGE AT 3-DIMENSIONAL FACIAL IMAGES (안면 입체영상 중첩시 중첩 기준 범위 설정에 따른 적합도 차이)

  • Choi, Hak-Hee;Cho, Jin-Hyoung;Park, Hong-Ju;Oh, Hee-Kyun;Choi, Jin-Hugh;Hwang, Hyeon-Shik;Lee, Ki-Heon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.149-157
    • /
    • 2009
  • Purpose: This study was to evaluate the validity of superimposition range at facial images constructed with 3-dimensional (3D) surface laser scanning system. Materials and methods: For the present study, thirty adults, who had no severe skeletal discrepancy, were selected and scanned twice by a 3D laser scanner (VIVID 910, Minolta, Tokyo, Japan) with 12 markers placed on the face. Then, two 3D facial images (T1-baseline, T2-30 minutes later) were reconstructed respectably and superimposed in several manners with $RapidForm^{TM}2006$ (Inus, Seoul, Korea) software program. The distances between markers at the same place of face were measured in superimposed 3D facial images and measurement were done all the 12 makers respectably. Results: The average linear distances between the markers at the same place in the superimposed image constructed by upper 2/3 of the face was $0.92{\pm}0.23\;mm$, in the superimposed image constructed by upper 1/2 of the face was $0.98{\pm}0.26\;mm$, in the superimposed image constructed by upper 1/3 of the face and nose area was $0.99{\pm}0.24\;mm$, in the superimposed image constructed by upper 1/3 of the face was $1.41{\pm}0.48\;mm$, and in the superimposed image constructed by whole face was $0.83{\pm}0.13\;mm$. There were no statistically significant differences in the liner distances of the makers placed on the area included in superimposition range used for partial registration methods but there were significant differences in the linear distances of the markers placed on the areas not included in superimposition range between whole registration method and partial registration methods used in this study. Conclusion: The results of the present study suggest that the validity of superimposition is decreased as superimposition range is reduced in the superimposition of 3D images constructed with 3D laser scanner for the same subject.

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.

A Study of Hair Damage by Magic Straight Perm

  • Lim, Sun-Nye
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • In this study, the changes in hair quality before and after Magic straight perm have been evaluated through a hair damage measurement method. For this, a healthy high school student's (age18 years) wavy hair was selected and permed on the left and right sides. Then, the changes caused by physical methods which were applied during the fl at iron-based Magic straight perm were evaluated based on the hair damage measurement method before and after the Magic straight perm. According to the protein release test after the Magic straight perm, 1.26% in average and 0.14% was observed in Cool Magic straight perm sample. In a field emission scanning electron microscopy (FE-SEM) test, saw teeth-shaped partial desquamation of cuticle cells and impurities were observed in the warm-treated hair sample. In atomic force microscope (AFM), line-profile is a method to represent roughness data on hair. According to analysis on 3-dimensional (3D) images, the hair with Cool Magic straight perm was lower than the hair with Warm Magic perm in terms of the color change of 3D images. In addition, vertical changes were observed in the hair with Cool Magic perm. As a result, irregular surface roughness was observed. This study proposed a method to minimize hair damage by cooling down the heat with the cool hair straightener as soon as the Warm Magic was finished.

Simple Method of Integrating 3D Data for Face Modeling (얼굴 모델링을 위한 간단한 3차원 데이터 통합 방법)

  • Yoon, Jin-Sung;Kim, Gye-Young;Choi, Hyung-Ill
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.34-44
    • /
    • 2009
  • Integrating 3D data acquired in multiple views is one of the most important techniques in 3D modeling. However, due to the presence of surface scanning noise and the modification of vertices consisting of surface, the existing integration methods are inadequate to some applications. In this paper, we propose a method of integrating surfaces by using the local surface topology. We first find all boundary vertex pairs satisfying a prescribed geometric condition on adjacent surfaces and then compute 2D planes suitable to each vertex pairs. Using each vertex pair and neighbouring boundary vertices projected to their 2d plane, we produce polygons and divide them to the triangles which will be inserted to empty space between the adjacent surfaces. A proposed method use local surface topology and not modify the vertices consisting of surface to integrate several of surfaces to one surface, so that it is robust and simple. We also integrate the transformed textures to a 2D image plane computed by using a cylindrical projection to composite 3D textured model. The textures will be integrated according to the partition lines which considering attribute of face object. Experimental results on real object data show that the suggested method is simple and robust.

Sheet Formation Properties of Morus Hanji (뽕나무 한지의 지합특성)

  • Yi, Il-Roh;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.3 s.116
    • /
    • pp.47-60
    • /
    • 2006
  • This study was carried out to investigate the sheet formation properties of Morus Hanjis, made of bast and whole stalk pulps by different pulping methods, such as alkali, alkali-peroxide and sulfomethylated pulping. Two species of Morus, M. alba and M. lhou, were used. Effect of morphological properties of pulp stocks on the sheet formation and its gray levels based on optical property were evaluated using an Image analyzer. In addition, the effect of fiber distribution index(FDI) which was calculated from tile data of Confocal laser scanning microscopy(CLSM) on the sheet formation and optical properties of Morus Hanji were also discussed. On the sheet formation, Hanji from whole stalk pulp was superior than that of bast pulp. The more the sheet formation improved, the more paper opacity decreased. In the aspect of Hanji's surface characteristics analyzed by an Image analyzer, the average gray level and its standard deviation of Hanji from the whole stalk pulp were rather lower than those of bast pulp because of better sheet formation of the former. However, high brightness Hanji showed high value of gray level. The sheet formation and paper opacity were increased with the decrease of standard deviation of gray level. From these results, gray level measurement could be used to predict the paper opacity as well as sheet formation. Sheet formation of whole stalk Hanji and its FDI measured by CLSM were higher than those of bast fibers. In conclusion, the sheet formation and opacity of Hanji could be evaluated by standard deviation value of Hanji's gray level using an Image analyzer and by fiber distribution index using CLSM.

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF

Utilizing Airborne LiDAR Data for Building Extraction and Superstructure Analysis for Modeling (항공 LiDAR 데이터를 이용한 건물추출과 상부구조물 특성분석 및 모델링)

  • Jung, Hyung-Sup;Lim, Sae-Bom;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.227-239
    • /
    • 2008
  • Processing LiDAR (Light Detection And Ranging) data obtained from ALS (Airborne Laser Scanning) systems mainly involves organization and segmentation of the data for 3D object modeling and mapping purposes. The ALS systems are viable and becoming more mature technology in various applications. ALS technology requires complex integration of optics, opto-mechanics and electronics in the multi-sensor components, Le. data captured from GPS, INS and laser scanner. In this study, digital image processing techniques mainly were implemented to gray level coded image of the LiDAR data for building extraction and superstructures segmentation. One of the advantages to use gray level image is easy to apply various existing digital image processing algorithms. Gridding and quantization of the raw LiDAR data into limited gray level might introduce smoothing effect and loss of the detail information. However, smoothed surface data that are more suitable for surface patch segmentation and modeling could be obtained by the quantization of the height values. The building boundaries were precisely extracted by the robust edge detection operator and regularized with shape constraints. As for segmentation of the roof structures, basically region growing based and gap filling segmentation methods were implemented. The results present that various image processing methods are applicable to extract buildings and to segment surface patches of the superstructures on the roofs. Finally, conceptual methodology for extracting characteristic information to reconstruct roof shapes was proposed. Statistical and geometric properties were utilized to segment and model superstructures. The simulation results show that segmentation of the roof surface patches and modeling were possible with the proposed method.

A Hybrid Approach for Automated Building Area Extraction from High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 자동화된 건물 영역 추출 하이브리드 접근법)

  • An, Hyowon;Kim, Changjae;Lee, Hyosung;Kwon, Wonsuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.545-554
    • /
    • 2019
  • This research aims to provide a building area extraction approach over the areas where data acquisition is impossible through field surveying, aerial photography and lidar scanning. Hence, high-resolution satellite images, which have high accessibility over the earth, are utilized for the automated building extraction in this study. 3D point clouds or DSM (Digital Surface Models), derived from the stereo image matching process, provides low quality of building area extraction due to their high level of noises and holes. In this regards, this research proposes a hybrid building area extraction approach which utilizes 3D point clouds (from image matching), and color and linear information (from imagery). First of all, ground and non-ground points are separated from 3D point clouds; then, the initial building hypothesis is extracted from the non-ground points. Secondly, color based building hypothesis is produced by considering the overlapping between the initial building hypothesis and the color segmentation result. Afterwards, line detection and space partitioning results are utilized to acquire the final building areas. The proposed approach shows 98.44% of correctness, 95.05% of completeness, and 1.05m of positional accuracy. Moreover, we see the possibility that the irregular shapes of building areas can be extracted through the proposed approach.

Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater (경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.310-317
    • /
    • 2020
  • This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.