• Title/Summary/Keyword: 3D Process

Search Result 7,547, Processing Time 0.036 seconds

Implications Deduction through Analysis of Reverse Engineering Process and Case Study for Prefabrication and Construction of Freeform Envelop Panels (비정형 건축물의 외장 패널의 선제작과 시공을 위한 역설계 프로세스와 사례 분석을 통한 시사점 도출)

  • Ryu, Han-Guk;Kim, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.579-585
    • /
    • 2016
  • 3D laser scanning can be used for scanning the freeform surface and building a model from which the measurements could be taken, in order to solve the difficulty with getting access to the exact freeform shape and position data of the complex building envelope. The shape making process using 3D scanning is as follows: point cloud, mesh surface segmentation, NURBS(Non-Uniform Rational B-spline) surface generation, and parametric solid model generation. In this research, we review previous studies, reverse engineering notion, importance of reverse engineering usage for freeform envelope, and previous cases in order to identify the detail reverse engineering process for prefabrication and construction of freeform panels using 3D laser scanning technology. Therefore, the purpose of this research is to present a basic information which should be considered during design and construction phase and improve quality and constructibility of freeform building by analyzing the reverse engineering process and case study for prefabrication and construction of freeform panels using 3D laser scanning. The research results will enable 3D shape engineering and design parameterization using reverse engineering to be used in various construction projects.

Dimensional Characteristics according to Internal Density of Automotive Inner Ring in 3D Printing (3D 프린팅에서 자동차용 Inner ring의 내부밀도에 따른 치수 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.96-102
    • /
    • 2019
  • Reverse engineering involves duplicating a physical part by measuring and analyzing its physical dimensions, features, and material properties. By combining reverse engineering with three-dimensional (3D) printing, engineers can simply fabricate and evaluate functional prototypes. This design methodology has been attracting increasing interest with the advent of the Fourth Industrial Revolution. In the present study, we apply reverse engineering and 3D printing technologies to evaluate a fabricated automotive inner ring prototype. Through 3D printing, inner rings of various densities were prepared. Their physical dimensions were measured with a 3D scanning system. Of our interest was the effect of inner ring density on the physical dimensions of the fabricated prototype. We compared the design dimensions and physical dimensions of the fabricated prototypes. The results revealed that even the 20% density of inner ring was effective for 3D printing in terms of satisfying the design requirements.

Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods (DLP, FDM 3D 프린팅 출력 방식에 따른 치수 특성에 관한 연구)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.66-73
    • /
    • 2021
  • In this paper, we analyzed and considered the precision of parts produced by 3D printing methods. For the latch systems applied to the Wingline folding doors, the 3D shape of the door hinge part was printed using FDM and DLP methods. Then, the 3D printed shape was scanned to measure the dimensions and dimensional changes of the actual model. In the comparison and analysis of the 3D printed door hinge parts, because the output filling density is 100% owing to the characteristics of DLP 3D printing, the filling density in FDM 3D printing was also set to 100%.

Development of a Fashion Design Process Utilizing Chinese Classical Garden Architecture with 3D Virtual Clothing Technology (3D 가상착의 기반 중국 고전 원림 건축을 활용한 해체주의 패션디자인 프로세스 연구)

  • Shanqi CAI;Jinyung Kim
    • Journal of Fashion Business
    • /
    • v.28 no.4
    • /
    • pp.45-61
    • /
    • 2024
  • This study adopted a deconstructionist approach to utilise expressive features of architecture of Suzhou Chinese classical gardens to conduct an empirical study that combined traditional elements with modern design processes. Firstly, concepts and characteristics of Chinese classical primary forest and deconstructionism are deeply understood. Their artistic value and modern application potential are explored. Artistic layers of classical primary forest and deconstructionism were analysed to investigate their sculptural and expressive characteristics and to explore new design measures. Based on this, a deconstructivist design process was utilised to develop an experimental fashion design process that utilized the classical Chinese image of Wenlim. The outcome of this research was a 3D virtual fashion design, which could present new design possibilities. It is hoped that this study will provide an easy and accurate analytical framework for further research on traditional Chinese images in contemporary fashion.

Collective laser-assisted bonding process for 3D TSV integration with NCP

  • Braganca, Wagno Alves Junior;Eom, Yong-Sung;Jang, Keon-Soo;Moon, Seok Hwan;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.396-407
    • /
    • 2019
  • Laser-assisted bonding (LAB) is an advanced technology in which a homogenized laser beam is selectively applied to a chip. Previous researches have demonstrated the feasibility of using a single-tier LAB process for 3D through-silicon via (TSV) integration with nonconductive paste (NCP), where each TSV die is bonded one at a time. A collective LAB process, where several TSV dies can be stacked simultaneously, is developed to improve the productivity while maintaining the reliability of the solder joints. A single-tier LAB process for 3D TSV integration with NCP is introduced for two different values of laser power, namely 100 W and 150 W. For the 100 W case, a maximum of three dies can be collectively stacked, whereas for the 150 W case, a total of six tiers can be simultaneously bonded. For the 100 W case, the intermetallic compound microstructure is a typical Cu-Sn phase system, whereas for the 150 W case, it is asymmetrical owing to a thermogradient across the solder joint. The collective LAB process can be realized through proper design of the bonding parameters such as laser power, time, and number of stacked dies.

Development of a System to Convert a 3D Mesh Model in STL Format into OBJ Format (STL 3D 형식의 메쉬 모델을 형식으로 OBJ 변환하는 시스템 개발)

  • Yeo, Changmo;Park, Chanseok;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • The 3D mesh model is used in various fields, such as virtual reality, shape-based searching, 3D simulation, reverse engineering, 3D printing, and laser scanning. There are various formats for the 3D mesh model, but STL and OBJ are the most typical. Since application systems support different 3D mesh formats, developing technology for converting 3D mesh models from one format into another is necessary to ensure data interoperability among systems. In this paper, we propose a method to convert a 3D mesh model in STL format into the OBJ format. We performed the basic design of the conversion system and developed a prototype, then verified the proposed method by experimentally converting an STL file into an OBJ file for test cases using this prototype.

A Bibliographical Study of Dock(Korean rice cake) (떡류(類)의 문헌적(文獻的) 고찰(考察) -(1670년${\sim}1943$년의 우리말 조리서를 중심으로)-)

  • Mang, Hae-Yull;Lee, Hyo-Gee
    • Journal of the Korean Society of Food Culture
    • /
    • v.3 no.2
    • /
    • pp.153-162
    • /
    • 1988
  • $D{\acute{o}}ck$ (Korean rice cake) is a peculiar food of Korea made of grain. By means of cooking from, it is defined as 'Pulvberzed food of grain' $D{\acute{o}}ck$ was one of the daily food, but development of boild rice had narrowed it's use to the food of festive days and ceremonies. $D{\acute{o}}ck$ is used as a main food of all Kinds of ceremonies from one's birth to death, such as the Three seven day(a baby's twenty-first day of life), one hunderdth day, birthday, wedding, both brithday, funeral and sacrifical rites, vocational ceremonies, such as a sacrifice to spirits and a srevics for a big catch of fish. It is also used as a present and seasonal food. A large variety of $D{\acute{o}}ck$ is available and its recipe is scientific and reasonable. In this treatise, the Kinds of $D{\acute{o}}ck$ and the frequency of them, the material, the recipe, the measuring unit of material, cooking kitchen utensils and the cooking terms are studied from the books published in Korea from 1670 to 1943. 1. $D{\acute{o}}ck$ was classified as Tcbin $D{\acute{o}}ck$(steamed), Chin $D{\acute{o}}ck$(strikn), Chijin $D{\acute{o}}ck$(fried) and Salmun $D{\acute{o}}ck$(boiled), according to its way of cooking. 2. There were 122 Kinds of $D{\acute{o}}ck$, 57 were Tchin $D{\acute{o}}ck$, 35 Chin $D{\acute{o}}ck$, 20 Chijin $D{\acute{o}}ck$, and 10 Salmun $D{\acute{o}}ck$. 3. There were 34 Kinds of measuring units. Of them, 13 for volume, 4 for weight, 9 for quantity, 4 for length and 4 for the rest. 4. There were 55 Kinds of cooking Kitchen utensils but now many of them are not used because of mechanization or automation of tools of living. 5. There were 143 Kinds of cooking terms. Of them 49 for the preparing process, 25 for the mixing process, 27 for well-forming process 10 for process of getting ready to cook, 14 for heating process, 10 for cutting process, 5 for dishin process and 3 for process of soaking in sugar or honey.

  • PDF

Improvement Plan of Quality Control for 3D Geospatial Database (3차원 국토공간정보 품질관리 개선방안에 관한 연구)

  • Seo, Chang-Wan;Choi, Yun-Soo;Kim, Jae-Myeong;Kim, Young-Hak;Kim, Young-Gil
    • Spatial Information Research
    • /
    • v.17 no.2
    • /
    • pp.231-241
    • /
    • 2009
  • Recently, The importance of a quality control for implementing 3D geospatial database has being emphasized to build a 21st century knowledge society and an ubiquitous land. The improvement of 3D geospatial database quality control through establishing an integrated quality control makes data suppliers update data efficiently and users get high quality data. The purpose of this study was to derive the improvement plan of 3D geospatial database quality control through the analyses of the existing 3D geospatial database quality control and case studies. The results of this study are as follows. Firstly, we defined the concept of 3D geospatial database quality control. Secondly, we set the boundary, factors and process of 3D geospatial database quality control through classifying it in detail. Lastly, we drew improvement contents such as the quality control checklist by implementation process according to the improvement plan of 3D geospatial database implementation.

  • PDF

A measure for activating BIM by actual application analysis of integrated utilization process of quantity, process(4D), and construction cost(5D) in view of life-cycle

  • Lee, Jae-Hong;Kim, Tae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.1-15
    • /
    • 2020
  • In this paper, we propose a novel method for converting the existing 2D processes in the design and construction phase of civil engineering, to the future BIM-based processes. First, we compare and analyze the actual application processes of the outputs of the existing 2D method and the outputs of the 3D BIM method, for the whole process of BIM design of earthworks and road structures and integrated utilization of quantity, process(4D) and construction cost(5D), in view of life-cycle. The proposed method acquire the outputs of the design phase integrating IFC international common standard file information and CBS/OBS/WBS standard classification scheme information, and acquire the outputs of the construction stage by using an integrated utilization module for quantity, process(4D) and construction cost(5D). Ultimately, we intend to commercialize the step by step technologies for BIM design and construction in civil engineering by using the proposed method.

The Green Cement for 3D Printing in the Construction Industry

  • Park, Joochan;Jung, Euntae;Jang, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.50-56
    • /
    • 2020
  • Currently, 3D printing technology is a new revolutionary additive manufacturing process that can be used for making three dimensional solid objects from digital films. In 2019, this 3D printing technology spreading vigorously in production parts (57%), bridge production (39%), tooling, fixtures, jigs (37%), repair, and maintenance (38%). The applications of 3D printing are expanding to the defense, aerospace, medical field, and automobile industry. The raw materials are playing a key role in 3D printing. Various additive materials such as plastics, polymers, resins, steel, and metals are used for 3D printing to create a variety of designs. The main advantage of the green cement for 3D printing is to enhance the mechanical properties, and durability to meet the high-quality material using in construction. There are several advantages with 3D printing is a limited waste generation, eco-friendly process, economy, 20 times faster, and less time-consuming. This research article reveals that the role of green cement as an additive material for 3D printing.