• Title/Summary/Keyword: 3D Pointing

Search Result 53, Processing Time 0.025 seconds

Development of the Pointing Device using EOG (EOG를 이용한 포인팅 디바이스의 개발)

  • Park, Hyoung-Joon;Park, Jong-Hwan;Chun, Woo-Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1356-1363
    • /
    • 1999
  • In this paper, a new method for controlling the pointing device using EOG(electrooculogram) signal generated from eye movement was suggested. The basic idea of the method is to control the direction of pointer, as using the results of measuring each component of the horizontal EOG and the vertical EOG by angle of eye-gaze. As a practical example, pointing device controlling the personal computer's pointer is manufactured. The designed pointing device consists of pre-amplifier, A/D converter, serial transmission device and PC program. That is, first, the EOG is amplified by pre-amplifier. Secondly, the amplified EOG is digitized and transmitted to personal computer by PIC16C74A. Finally, the software for controlling the pointer on personal computer is programed. As the result, the measured horizontal EOG and vertical EOG by eye-gaze angle had high linearity; the correlation coefficients of the regression line were 0.998 and 0.996 respectively. And the developed pointing device is able to control the personal computer's pointer, and the average of the errors between the objective value and the observed value had 3.77% for horizontal axis and 5.85% for vertical axis. The pointing device developed in this study is able to control personal computer's pointer by subject's eye movement, that is, the user's intention. Furthermore, the algorithm of this study is applicable for many field, such as a new method remote control, a new wheelchair control and so forth.

  • PDF

Implementation of interactive 3D floating image pointing device (인터렉티브 3D 플로팅 영상 포인팅 장치의 구현)

  • Shin, Dong-Hak;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1481-1487
    • /
    • 2008
  • In this paper, we propose a novel interactive 3D floating image pointing device for the use of 3D environment. The proposed system consists of the 3D floating image generation system by use of a floating lens array and the a user interface based on real-time finger detection. In the proposed system, a user selects single image among the floating images so that the interaction function are performed effectively by pressing the button event through the finger recognition using two cameras. To show the usefulness of the proposed system, we carry out the experiment and the preliminary results are presented.

3D Physical User Interface System using a Dominant Eye and an Index Fingertip (주시안과 검지 끝 점을 이용한 3차원 물리 사용자 인터페이스 시스템)

  • Kim, Kyung-Ho;Ahn, Jeeyun;Lee, Jongbae;Kwon, Heeyong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.138-146
    • /
    • 2013
  • In this paper, we propose a new 3D PUI(Physical User Interface) system in which the index fingertip points and moves a mouse position on a given monitor screen. There are two 3D PUI schemes to control smart devices like smart TVs remotely, the relative pointing one and the absolute pointing one. The former has a problem in that it does not match the human perception process, and the latter requires excessive movement of the body. We combined the relative one and the absolute one, and develop a new intuitive and user-friendly pointing method, 3D PUI. It requires an establishment of a pyramid shape visible area (view volume) to point a mouse position on a screen with the dominant eye. In order to maintain the real-time view volume, however, it requires large computation depending on the movement of the dominant eye. We optimized the computation of the view volume in which it determines the internal and external position on the screen. In addition, Kalman filter is applied with tracing of the mouse pointer position to stabilize the trembling of the pointer and offers the user ease of use.

The Implementation of 3D Measurement System by Image Pointing Method (영상선점 기법에 의한 3차원 측위 시스템 구현)

  • 송승호;김용배;주영은;엄대용
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.191-197
    • /
    • 2002
  • Recently, with the eye-opening progress in the related field of computer, the development of high resolution digital camera enables more precise positioning in digital photogrammetry, and a lot of interest has been concentrated on its application. In this study, the algorithm and system which enable the measurement of 3D point more easily was developed by image pointing method using digital image, when the digital map of the Cultural Properties of Architectures in Modern Ages is drawn by photogrammetry. As a result, we can reduce the limitation of surveying control point, exposure condition, and construct the digital map and 3D model of architecture more efficiently.

A Study on Pointing-based Navigation Technique with Visual Feedback Supporting Simultaneous View Change (동시 시점 변경과 시각 피드백을 제공하는 포인팅 기반 네비게이션 기법에 대한 연구)

  • 박하영;최윤철
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.205-209
    • /
    • 2001
  • 3D 가상판정에서의 네비게이션 기법은 공간에 대한 참여자의 몰입감과 사실감에 결정적인 영향을 미치는 매우 중요한 요소이다. 네비게이션 분야에 대한 기존의 연구는 주로 강력한 하드웨어를 기반으로 하는 몰입형 가상현실 분야 위주로 진행되어 왔다. 최근에는 인터넷을 기반으로 하는 비 몰입형 가상환경 분야에 대한 관심이 고조되고 있으나 참여자가 인지하는 3D-2D간의 공간적 불일치 문제를 해결해야 하는 어려움을 가지고 있다. 따라서 본 논문에서는 비 몰입형 가상환경에서 참여자의 3D 공간에 대한 인지적인 문제를 해결해 굴 수 있는 네비게이션 기법으로서, 포인팅에 기반 한 3D-2D간의 매핑, 이동 방향이나 목표지점을 제시하는 시각 피드백, 이동 중 참여자 시점 동시변경 기능들을 제안한다 제안된 기법은 3D 가상환경에서 일반 참여자의 네비게이션을 매우 효과적으로 지원할 수 있음을 확인하였다.

  • PDF

Evaluating the performance of direct manipulation input devices (직접조작방식 입력장치의 성능비교)

  • 박재희;이남식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.103-109
    • /
    • 1992
  • Direct manipulations are composed of pointing operations and dragging operations. In order to find the optimum design parameters (such as C/D ratio, moving direction) for the direct manipulation of a GUI(Graphical User Interface), an ergonomic experiment was devised (2*4*3*8 design) to measure the performance of a mouse (Microsoft) and a trackball (Logitech). The results showed that the mouse was more suitable for the direct manipulation (expecially for the dragging operation) than the trackball, and the suitable C/D ratio was 10 (for the mouse) and 16 (for the trackball). Also the movement direction was a determinant factor in trackball performance.

  • PDF

Implementation of an Autostereoscopic Virtual 3D Button in Non-contact Manner Using Simple Deep Learning Network

  • You, Sang-Hee;Hwang, Min;Kim, Ki-Hoon;Cho, Chang-Suk
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.505-517
    • /
    • 2021
  • This research presented an implementation of autostereoscopic virtual three-dimensional (3D) button device as non-contact style. The proposed device has several characteristics about visible feature, non-contact use and artificial intelligence (AI) engine. The device was designed to be contactless to prevent virus contamination and consists of 3D buttons in a virtual stereoscopic view. To specify the button pressed virtually by fingertip pointing, a simple deep learning network having two stages without convolution filters was designed. As confirmed in the experiment, if the input data composition is clearly designed, the deep learning network does not need to be configured so complexly. As the results of testing and evaluation by the certification institute, the proposed button device shows high reliability and stability.

Collaborative 3D Design Workspace for Geographically Distributed Designers - With the Emphasis on Augmented Reality Based Interaction Techniques Supporting Shared Manipulation and Telepresence - (지리적으로 분산된 디자이너들을 위한 3D 디자인 협업 환경 - 공유 조작과 원격 실재감을 지원하는 증강현실 기반 인터랙션 기법을 중심으로 -)

  • SaKong Kyung;Nam Tek-Jin
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.71-80
    • /
    • 2006
  • Collaboration has become essential in the product design process due to internationalized and specialized business environments. This study presents a real-time collaborative 3D design workspace for distributed designers, focusing on the development and the evaluation of new interaction techniques supporting nonverbal communication such as awareness of participants, shared manipulation and tele-presence. Requirements were identified in terms of shared objects, shared workspaces and awareness through literature reviews and an observational study. An Augmented Reality based collaborative design workspace was developed, in which two main interaction techniques, Turn-table and Virtual Shadow, were incorporated to support shared manipulation and tele-presence. Turn-table provides intuitive shared manipulation of 3D models and physical cues for awareness of remote participants. Virtual shadow supports natural and continuous awareness of location, gestures and pointing of partners. A lab-based evaluation was conducted and the results showed that interaction techniques effectively supported awareness of general pointing and facilitated discussion in 3D model reviews. The workspace and the interaction techniques can facilitate more natural communication and increase the efficiency of collaboration on virtual 3D models between distributed participants (designer-designer, engineer, or modeler) in collaborative design environments.

  • PDF

A Bifurcation Analysis of Space Structures by Using 3D Beam-Column Element Considering Finite Deformations and Bowing Effect (유한변형과 굽힘효과가 고려된 3차원 보-기둥요소에 의한 공간구조물의 분기좌굴해석)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.307-314
    • /
    • 2009
  • The present paper briefly describes the space frame element and the fundamental strategies in computational elastic bifurcation theory of geometrically nonlinear, single load parameter conservative elastic spatial structures. A method for large deformation(rotation) analysis of space frame is based on an eulerian formulation, which takes into consideration the effects of large joint translations and rotations with finite deformation(rotation). The local member force-deformation relationships are based on the beam-column approach, and the change in member chord lengths caused by axial strain and flexural bowing are taken into account. and the derived geometric stiffness matrix is unsymmetric because of the fact that finite rotations are not commutative under addition. To detect the singular point such as bifurcation point, an iterative pin-pointing algorithm is proposed. And the path switching mode for bifurcation path is based on the non-negative eigen-value and it's corresponding eigen-vector. Some numerical examples for bifurcation analysis are carried out for a plane frame, plane circular arch and space dome structures are described.

Comparative Enzyme Production by Fungi from Diverse Lignocellulosic Substrates

  • Sin, Marie K.W.;Hyde, Kevin D.;Pointing, Stephen B.
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.241-244
    • /
    • 2002
  • Fungi commonly encountered on monocotyledonous substrates were evaluated for their in vitro ability to produce enzymes involved in lignocellulose breakdown. Most were capable of structural polysac-charide utilization, but few produced enzymes associated with lignin breakdown. None of the mono-cotyledon-inhabiting fungi produced reactions as strongly as wood decay fungi.